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Yuhsin Tsai, Ph.D.

Cornell University 2012

While our current paradigm of particle physics, the Standard Model (SM), has been ex-

tremely successful at explaining experiments, it is theoretically incomplete and must be

embedded into a larger framework. In this thesis, we review the main motivations for

theories beyond the SM (BSM) and the ways such theories can be constrained using low

energy physics.

The hierarchy problem, neutrino mass and the existence of dark matter (DM) are the

main reasons why the SM is incomplete . Two of the most plausible theories that may

solve the hierarchy problem are the Randall-Sundrum (RS) models and supersymmetry

(SUSY). RS models usually suffer from strong flavor constraints, while SUSY models pro-

duce extra degrees of freedom that need to be hidden from current experiments. To show

the importance of infrared (IR) physics constraints, we discuss the flavor bounds on the

anarchic RS model in both the lepton and quark sectors. For SUSY models, we discuss

the difficulties in obtaining a phenomenologically allowed gaugino mass, its relation to

R-symmetry breaking, and how to build a model that avoids this problem.

For the neutrino mass problem, we discuss the idea of generating small neutrino

masses using compositeness. By requiring successful leptogenesis and the existence of

warm dark matter (WDM), we can set various constraints on the hidden composite sec-

tor. Finally, to give an example of model independent bounds from collider experiments,

we show how to constrain the DM–SM particle interactions using collider results with an

effective coupling description.
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CHAPTER 1

INTRODUCTION

Physics rules are approximations of nature. With the help of mathematical tools, they

explain and predict experimental results when a self consistent framework. However,

approximations have their limits. Current physics rules should only be considered as an

effective description of the observed world. Due to experimental limits, a theory can only

be examined at the reachable energy scale, and it is not surprising that the current under-

standing needs to be modified to accommodate results from higher energy experiments.

Theories that are approximations of the low energy physics are called infrared (IR) the-

ories, while more fundamental descriptions which are consistent up to a higher energy

scale are called the ultraviolet (UV) theories. Progress in high energy physics is nothing

but identifying the limit for the current scenario to break down, treating it as an IR theory

and extending it to an UV description with the help of experiments.

The Standard Model (SM), which was built as a UV theory describing the strong and

electroweak interactions is now understood to only be an IR theory only. How to move a

step forward by building a consistent UV theory is the central issue in high energy physics

today. With the three generations of quarks and leptons, the SM has correctly predicted

almost all the measured scattering cross sections, decay rates and various asymmetries

mediated by the strong and the electroweak forces. Furthermore, the Higgs mechanism

gives a concise tool to unify and break the electroweak symmetry while satisfying various

electroweak precision measurement (EWPM) constraints.

However, even with all the success in predicting the experimental results, it is still

difficult to think of the SM as the true UV theory of nature for two reasons. First, the the-

ory requires fine tuning, and there is no way to explain the necessary energy cutoffs and
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the mass hierarchy within the model. Moreover, current progress in our understanding

in dark matter (DM), dark energy, neutrino oscillations, matter-antimatter asymmetry,

strong-CP problem, flavor physics, and cosmology strongly suggest the existence of extra

particles and interactions. These reasons motivate us to look for theories that lie beyond

the SM (BSM). Let us, therefore, begin with a review of some of these motivations.

1.1 Hierarchy problem in the SM

The most important fine-tuning problem in the SM relates to the cutoff dependence of the

Higgs mass correction. When adding radiative corrections to the Higgs mass, the one-

loop contribution from the SM particles are quadratically divergent. If the Plank scale

— the scale where the quantum effects of gravity become strong (∼ 1019 GeV) — is the

fundamental scale of nature, then the bare Higgs mass needs to be at the same order but

adjusted very precisely to cancel the quadratic divergence to obtain an electroweak scale

mass. The unnatural adjustment has to be one in 1017, and the gigantic difference between

the two scales grants the issue a famous name — the hierarchy problem.

1.1.1 SUSY and its breaking

There are two possible ways to make the Higgs mass natural — either by having an ad-

ditional symmetry that forbids the quadratic divergence, or separating the two scales by

embedding them in a non-trivial geometry. The most popular scenarios for the two differ-

ent approaches are supersymmetry (SUSY) and the Randall-Sundrum (RS) model respec-

tively. Supersymmetry is the only way to combine an internal symmetry with space-time

symmetry. The operators of the internal symmetry relate elementary particles of one spin
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to other particles that differ by half a spin. The new particles obtained by shifting the spin

of the SM particles are called superpartners. They give additional loop corrections to the

Higgs mass. For the fermion and gauge boson loops attached to the Higgs propagator,

there are diagrams with sfermions (the scalar partners of the fermion) and gauginos (the

fermionic partners of the gauge boson) loops that cancel the quadratic divergence. The

one-loop Higgs mass correction then becomes logarithmically divergent, which allows a

much higher cutoff scale given by the nature scale. Another nice feature of having su-

perpartners is that they make gauge coupling unification exact. Around 1016 GeV, the

renormalization group (RG) running in the minimal SUSY model makes the couplings of

the three gauge interactions coincide. This does not happen in the SM.

Although the existence of superpartners solves the hierarchy problem and leads to

unification, the new particles need to be hidden from existing collider searches. More

precisely, SUSY needs to be broken, and most of the superpartners need to be heavier

than the electroweak scale. How to break SUSY and produce a phenomenologically al-

lowed spectrum is then an important question. Ideally, SUSY breaking occurs generically,

which means that there is no tuning between the parameters and no need for extra gauge

symmetries to be put in by hand. This philosophy leads to several constraints when try-

ing to build a plausible model.

First, in order to preserve the symmetric protection against quadratic divergent to the

Higgs mass correction, SUSY needs to be broken spontaneously. The SUSY algebra re-

quires SUSY breaking vacua to be positive. This is not an easy task for a generic model:

if the number of equations for solving the VEVs is the same as the number of variables,

then making all the scalar VEVs zero would be a solution that preserves SUSY. However,

having additional symmetries places extra constraints that may forbid the trivial solu-

tion. A natural candidate is R-symmetry, which is a U(1) symmetry that exists in the
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SUSY algebra with both the SUSY generators and the anti-commuting coordinates θ, θ†

carry an R-charge. A theorem from Nelson and Seiberg [313] shows that R-symmetry is

a necessary condition for a generic SUSY breaking. We then want to preserve it in the UV

theory. Although R-symmetry is important for SUSY breaking, we still have to break it

spontaneously above the TeV scale. This is because gauginos are Majorana fermions in

most of SUSY models (except models with Dirac gauginos[210, 281]), and R-symmetry

needs to be broken to generate TeV scale masses. Again, this is not an easy task because

of various SUSY constraints, and we discuss the issue in Sec. 1.3.2.

Superpartners get masses from SUSY breaking. If the masses are generated at tree-

level with renormalizable couplings, there is a sum rule for the fermion and boson masses

that forces some superpartners to be lighter than the SM particles. To avoid experi-

mental constraints, superpartners in the visible sector need to get mass through non-

renormalizable couplings. This means the breaking needs to be transmitted to the visi-

ble sector through mediators that suppress the generated masses from the SUSY break-

ing scale and violate the sum rule in the visible sector. The most studied mediating

mechanisms are non-renormalizable gravitational interactions or the loop-induced SM

gauge interactions. Gravity is a natural candidate for the mediation; when combined

with SUSY, the supergravity (SUGRA) model automatically provides the necessary non-

renormalizable interactions. However, since the mediation occurs at the Plank scale, fla-

vor symmetry is broken at a high energy scale and can be mediated through the gravita-

tional interactions and generate an order one flavor changing couplings at the TeV scale

which are forbidden by flavor changing neutral currents (FCNCs) constraints. By com-

parison, SUSY breaking in gauge mediation models is transmitted by light messengers

which carry charges both in the SUSY breaking and the visible sectors. The visible sector

couplings are the SM gauge interactions, which are flavor blind and generate no flavor-
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changing couplings. We therefore focus on this type of model when discussing gaugino

masses and R-symmetry breaking in Sec. 1.3.2.

1.1.2 The Randall-Sundrum model

Randall-Sundrum (RS) models imagine that the universe is a five-dimensional anti de Sit-

ter space, and the elementary particles are either localized on a four-dimensional brane

or propagate in the bulk. Unlike the large extra dimension (ADD) model, which uses

additional sub-millimeter sized flat dimensions to suppress gravity, the RS model has a

warped geometry, and the size of the extra dimension is only the inverse of the Plank

scale. There are two popular models: RS1 has a finite size for the extra dimension

bounded by two branes, while RS2 is similar but with one brane placed infinitely far away

so there is only one brane left in the model. For the purpose of generating a hierarchical

mass spectrum, it is easier to consider RS1.

In RS1, the warping of the extra dimension is analogous to the warping of the space-

time in the vicinity of a massive object. This generates a large ratio of energy scales so

that the natural energy scale at one end of the extra dimension is much larger than at the

other end. To solve the hierarchy problem between the electroweak and the Plank scales,

the natural scale of one brane is set to be the Plank scale (UV brane) and the scale of the

other brane to be the TeV scale (IR brane). With the warped geometry, the Higgs localized

on the IR-brane with a TeV scale cutoff can be connected with Plank scale physics. The

quadratic divergence in the Higgs mass correction then should only be cut around the

TeV scale and is absorbed by the bare mass at a similar scale.

Another consequence of the warped geometry is the generation of a hierarchical mass
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spectrum. If a SM fermion lives in the bulk, the wave function corresponding to the

lowest energy solution carries a warp suppression on one of the branes. This makes the

Yukawa coupling between UV-localized fermions and an IR-localized Higgs exponen-

tially suppressed. Since the coefficient in the exponential suppression determines the 5D

localization of a fermion, a small change of the localization generates a big mass differ-

ence. We are then able to reproduce the hierarchical SM mass spectrum using anarchic

and order one Yukawa matrices.

The overlap between wave functions in the bulk, however, causes flavor problems.

Besides Yukawa couplings, the bulk mass of the 5D fermions gives an additional source

of flavor violation. There then exist non-SM FCNC diagrams depending on both the

Yukawa and the fermion localization. Fortunately, most of the flavor-violating processes

are given by the difference between the bulk masses and the so-called RS-GIM mechanism

saves the model from many flavor constraints. However, flavor experiments still provide

important bounds on the anarchic RS model which we discuss them in Sec. 1.3.1.

Another important feature of RS models is their relation to the AdS/CFT correspon-

dence, which makes them dual to technicolor models (for a review, see [?]). By the

AdS/CFT correspondence, the RS model is dual to a strongly coupled conformal field

theory (CFT). A dictionary can be built between the two descriptions, where every 5D

bulk field is associated with a CFT operator, and the boundary value of the bulk field acts

as a source field for the CFT operator. Using this, the n-point functions in the strongly-

coupled CFT can be computed by knowing the 5D on-shell bulk action.

Compactifying the AdS5 space as in the RS1 model breaks conformal symmetry, and

the position in the extra dimension is related to the 4D CFT energy scale between the

UV and the IR cutoffs. The UV-brane breaks conformal invariance explicitly. Since low-
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ering the energy scale (moving towards the IR-brane) restores the conformal symmetry,

the breaking must come from irrelevant operators. This makes the source field local-

ized on the UV-brane capable of obtaining a kinetic term and become dynamical. The

UV-localized field in the 5D theory is then mainly composed of this elementary source

field in the CFT language. On the other hand, the IR-brane breaks the conformal in-

variance spontaneously, which generates a pseudo-Nambu-Goldstone boson that gets a

mass when brane stabilizing terms are included. Since the breaking at the IR-scale is dy-

namically generated, an IR-localized field in the 5D picture then is mainly composed of

composite fields in the strongly coupled theory, which gets a mass scale and breaks the

symmetry. To summarize, the CFT dual of RS models, UV localized fields such as leptons

are closer to elementary fields, while the IR localized fields such as the tops are more com-

posite. For neutrinos, generating a small Yukawa mass from the overlap integral between

UV- and IR-localized neutrinos is dual to models obtaining small neutrino masses using

composite right-handed neutrinos. We discuss the idea and applications of composite

neutrinos in Sec. 1.3.3.

1.2 Experimental motivation for BSM theories

1.2.1 Neutrino oscillations

Another motivation for physics beyond the SM is the necessity of new degrees of freedom

to explain various experimental anomalies. For example, through the study of neutrino

oscillations, it has been confirmed that neutrinos have small but non-zero masses, and

that the mass matrix carries large mixing angles. This means we have to include an ad-

ditional mass matrix in the Lagrangian, which only contains left-handed neutrinos in the
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SM case. Once we add the mass matrix, a natural question to ask is why the neutrino

masses (around eV scale) are much smaller than the electroweak scale. In analogy with

the hierarchy problem between the Plank/electroweak scales, the gap between fermion

masses also has a hierarchical structure that needs to be explained. There are many plau-

sible ideas to produce light neutrinos. One of them is to assume that neutrinos, like any

other SM particle, only gets mass from coupling to the Higgs, and the coupling is sup-

pressed due to the compositeness of the RH neutrinos. The idea is realized in the com-

posite neutrino and the RS models. We discuss these models in Sec. 1.3.3.

1.2.2 Matter-antimatter asymmetry

From the cosmological point of view, the SM itself does not provide enough tools to gen-

erate the universe we see today, in particular the observed matter–antimatter asymmetry.

The number of baryons in the universe is not equal to the number of antibaryons. In fact,

all the structures that we observe in the universe — stars, galaxies, and clusters — consist

of matter, and there is no antimatter in any appreciable quantity. Since it is natural to

assume that the universe started from a state with an equal number of baryons and an-

tibaryons, the observed baryon asymmetry must have been generated dynamically. This

scenario is called baryogenesis. There are several baryogenesis models, and all of which

require BSM physics. For models producing net baryon number around the electroweak

scale, a strong first order phase transition is necessary to preserve the generated asym-

metry from being washed out by the sphaleron effect. A sphaleron is a non-perturbative

solution in the finite temperature Higgs vacuum that shifts a vacuum carrying one baryon

number to another. The average effect diminishes the sum of the baryon and lepton num-

bers (B + L) but preserves the difference (B − L). When the net lepton number is zero,
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sphalerons wash out the baryon asymmetry, and this is why a strong first order phase

transition is required to get the baryon production out of equilibrium. In the minimal

supersymmetric standard model (MSSM), a strong first order phase transition can be re-

alized with the help of light stops, since they can thermally produce a large enough cubic

term in the Higgs potential that makes the phase transition first order.

Another way of getting the asymmetry without a strong first order phase transition is

to generate a net lepton number and let sphalerons to convert it to a baryon asymmetry,

since B + L is not conserved and B − L is preserved. This type of scenario is called

leptogenesis. The popular leptogenesis models not only generate the required baryon

asymmetry but also explain the hierarchy between the neutrino mass and the electroweak

scale. In this thesis, we give an example of a leptogenesis model within the framework of

composite neutrinos in Sec. 1.3.3.

1.2.3 Dark matter

Besides neutrinos and matter-antimatter asymmetry, observations from the dynamics of

the stars also indicate the existence of new particles. These particles should be massive

like the SM fermions but have no or very weak interaction with photons, which gives

them a vivid name: dark matter (DM). The discrepancy between the predicted and ob-

served dynamics of galaxies reveals the existence of DM. When estimating the gravita-

tional force necessary for the observed orbit velocities of stars in the Milky Way and other

galaxies, the calculated mass is much larger than what is accounted for by visible mat-

ter. Many other observations also indicate the presence of DM, including the flat radius

dependence in the rotational speed of galaxies, the gravitational lensing of background

objects by clusters (such as the Bullet Cluster), and the temperature distribution of hot gas
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in galaxies. Current estimates show that DM constitutes 83% of the matter in the universe

and 23% of the mass-energy density. How they can be included in an extension of the SM

is a central issue in building a BSM theory. Previously, the most exciting DM candidate

was the lightest supersymmetric particle (LSP). It can be long-lived, electrically neutral,

have an electroweak scale mass and annihilation cross section producing the right relic

abundance. However, due to increasingly strong bounds from collider and direct detec-

tion experiments, the parameter space for the LSP mass and interactions in the minimal

model has been seriously squeezed. This means that there is no uniquely preferred DM

model, and it is an urgent task to constrain the parameter space from various experimen-

tal results. However, it is non-trivial to combine these results and to determine the useful

experimental signatures. In Sec. 1.3.4, we give an example of how one may constrain DM

interactions using the mono-jet and mono-photon searches at colliders. We also give an

example of a warm dark matter (WDM) candidate in the composite neutrino model in

Sec. 1.3.3.

1.3 IR constraints on BSM theories

We briefly discuss some IR physics constraints on the BSM scenarios mentioned above,

including flavor constraints on the anarchic RS model, gaugino mass constraints on a

dynamical SUSY breaking scenario, and the requirements for having leptogenesis and

WDM in the composite neutrino model. As we will see, there are constraints from both

the theoretical and experimental points of view. To give an explicit example of how to set

experimental constraints to UV theories, we also discuss DM constraints from colliders

using the effective coupling description. We will get into details of the analysis in the

following chapters.
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1.3.1 Flavor constraints on the anarchic RS model

As we discussed, the bulk masses of fermions in RS introduce new sources of flavor vio-

lation. It is important to know how strong the flavor constraints are in the model. There

are two kinds of flavor constraints — one from tree-level processes and the one from

loop-induced processes. At tree-level, FCNCs are induced by the non-universalilty of

the gauge boson wave functions in the bulk. Taking µ → e conversion as an exam-

ple, the SM like Z-boson wave function is not flat near the IR-brane because it gets a

mass from the brane-localized Higgs. Its overlap integral to fermions then is flavor non-

universal, which generates flavor mixings in the mass basis. To reduce the effect, one can

pull the fermion wave functions away from the IR-brane. However, in order to maintain

the fermion masses, the size of the anarchic Yukawa needs to be increased simultane-

ously. This means the tree-level flavor violation is inversely proportional to the size of the

anarchic Yukawa.

In contrast, the loop-induced flavor mixing is proportional to the size of the Yukawa.

In the basis where all the flavor mixings exist in the Yukawa, the loop induced FCNC

has to change the flavor from the Higgs mass insertion. The size of the loop is then

proportional to some powers of the anarchic Yukawa. Combining this with the tree-level

constraints, we can set both an upper and a lower bound on the anarchic Yuakwa for a

given size of the bulk. Since the size of the bulk should be around 1/TeV for colliders to

produce the excited states, this sets direct bounds on the anarchic RS model.

There are FCNC constraints from both the lepton and the quark sectors. For leptons,

the most stringent tree-level constraints come from the µ→ e conversion and the µ→ 3e

decay, while the most important loop-induced constraint is from the µ → eγ penguin.

In the SM, one-loop penguin contributions are UV-convergent. This is because the SM is
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a renormalizable theory so the leading order diagram has to be finite. However, the RS

model is a non-renormalizable theory, which can be seen by the fact that all the couplings

beside the bulk mass carry negative energy dimensions. An infinite number of countert-

erms then is necessary to regulate all the higher order operators, and there is no guarantee

that the leading order diagram has to be finite. Because of this, all the previous attempts

in estimating the size of the one-loop µ→ eγ were based on a naive dimensional analysis

(NDA). It was believed that the diagram with a brane-Higgs running in the loop has to

be logarithmic-divergent, and there is no way to calculate the Yuakwa bound precisely.

However, the old belief is wrong, and the one-loop µ → eγ is actually finite and cal-

culable. In Chapter 2, we calculate the leading order diagrams explicitly and explain the

reason for the finiteness. Instead of the Kaluza-Klein (KK) decomposition approach, we

derive Feynman rules from the 5D Lagrangian directly and use them to perform a full 5D

calculation. By doing this, the only cutoff that shows up in the calculation is the 4D mo-

mentum, which makes the finiteness more obvious than in the KK calculation, in which

various cutoffs from summing the KK modes need to be included. Besides this, there is a

non-trivial matching between the 4D momentum and the KK sum cutoffs in the KK cal-

culation. As we show in Chapter 2, a wrong matching gives an incorrect result, and the

prescription for doing a correct 4D calculation is still an open question. Nevertheless, the

issue is only present when doing the KK calculation, which gives further contribution for

doing the calculation in 5D. The result of our µ → eγ calculation sets a complementary

bound to the tree-level constraints and the allowed KK scale needs to be above 6 TeV.

Flavor bounds in the quark sector also provide stringent constraints. The tree-level

exchange of KK gluons and neutral electroweak gauge bosons contribute to meson–anti

meson mixing and induces left-right operators that do not exist in the SM. The effects re-

ceive significant enhancement due to the QCD running. In the kaon system they are also
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chirally enhanced by the ratio between the KK and strange masses. This leads to new CP

violating effects in the well-measured observable, εK , which pushes the KK gluon mass

up to 10 − 20 TeV generically. In Chapter 3, we examine the phenomenological observ-

ables of the loop-induced process b → qγ (q = s, d) with a brane-localized Higgs using

the full 5D calculation. In comparison to µ → eγ, the theoretical predictions are more in-

volved due to the RG evaluation from the KK scale to the B meson scale and below. The

large range of energy scales introduces mixing between different operators, so for the low

energy observables the effect of the gluon loops should also be included. We calculate

the branching ratio Br(B → Xsγ) and the CP averaged branching ratio 〈Br(B → Xd γ)〉.

Using these and the tree-level constraints, we perform parameter scans and make predic-

tions of the RS contribution to Br(B → Xs µ
+µ−), forward backward asymmetry AFB in

B → K∗µ+µ−, the time-dependent CP asymmetry SK∗γ and the transverse asymmetry

A
(2)
T in B → K∗µ+µ−. As we will see, many of the observables get distinct RS contribu-

tions and may be seen in near future experiments.

1.3.2 SUSY breaking, gaugino mass and R-symmetry

Naively, SUSY breaking happens at a high energy scale and should suffer stringent con-

straints from electroweak scale physics. If we require the theory to be natural — i.e. that

there is no tuning of the parameters, no extra flavor violation in the IR theory and no

SUSY vacua — then the IR physics can set direct constraints on the SUSY breaking sce-

nario. Among various constraints from the IR physics, obtaining a phenomenologically

allowed gaugino mass plays a very important role.

As discuss in Sec. 1.1.1, spontaneous SUSY breaking generically requires the existence

of an R-symmetry [313]. Nevertheless, the R-symmetry needs to be spontaneously bro-
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ken in a lower energy scale in order for gauginos to obtain Majorana masses. In general

one can envision either tree-level spontaneous R-breaking or radiatively induced break-

ing. Models with tree-level R-breaking exist, but they are rather cumbersome and have

not yet been found naturally in dynamical SUSY breaking models. We thus focus on the

case with R-breaking generated by loop-induced potentials.

A SUSY breaking vacuum is necessarily accompanied by a flat direction called a pseu-

domodulus (PM). It carries R-charge 2 and serves as the SUSY breaking spurion. For a

loop-induced R-breaking, the PM gets negative mass from the Coleman-Weinberg poten-

tial and breaks the symmetry spontaneously. The generic breaking mechanism is con-

strained: it is shown in [341] that for a generalized O’Raifeartaigh model with a single

PM, there can be no radiatively induced R-symmetry breaking at the one loop level if all

the fields carry R-charge 0 or 2. Since the simplest charge assignment in the superpoten-

tial is to have the PM carrying an R charge 2 and all the other fields carry a zero R-charge,

the proof explains the tiny gaugino masses in many well-known models. When having

a single PM, the PM must couple to SUSY breaking. It is then interesting to ask if the

same R-charge constraint applies for models with multiple pseudomoduli, in which case

only one of the PM relates to SUSY breaking while the others can be responsible for the

R-breaking. A few attempts have been made to build such kind of models, but none of

them get the expected breaking through explicit calculations. In 4, we give a general proof

for this surprising result.

Even for models with a leading order R-breaking, the gaugino mass is much smaller

than the scalar masses. This is a problem since a gluino lighter than stops forces the

stops to be heavy and causes a “little hierarchy” problem. It has been found in [274]

that the anomalously small gaugino mass is closely related to the global properties of the

vacua of the theory. If SUSY is broken in the lowest energy state of the vacua, then the
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leading order gaugino mass vanishes. The reason for this is as follows. The leading order

gaugino mass is proportional to the derivative with respect to the PM on the fermion

masses. If the result is not zero, the fermion masses depend on the PM, and there is

always a PM VEV corresponding to zero fermion masses. However, the fermion masses

show up in the diagonal blocks of the scalar mass matrix. The vanishing diagonal blocks

generate tachyons, and the SUSY breaking vacuum then is not a global minimum. If SUSY

breaking does occur in the global minimum, then the fermion mass is independent of the

PM, and the leading order gaugino mass vanishes.

One way to avoid the constraint is to have SUSY breaking in a meta-stable vacuum.

Models like this usually require tuning and contain Landau poles as a result of stabiliz-

ing the vacuum. To build a phenomenologically preferred model, we propose a simple

Intriligator, Seiberg and Shih (ISS) - type scenario [262] with a minimal flavor content. Ex-

panding the theory around a meta-stable SUSY breaking vacuum and stabilizing it with

a singlet sector, we obtain large gaugino masses without Landau poles. We discuss this

in Chapter 5.

1.3.3 Dirac leptogenesis, WDM and composite neutrinos

Composite neutrinos are an interesting way to generate small neutrino masses. The ba-

sic idea is that there exists a hidden sector with strong dynamics at a scale Λ. Confine-

ment in this sector leaves some chiral symmetries exact and produces massless composite

fermions. If these fermions serve as RH neutrinos, their couplings to the active neutrinos

go through effective couplings. Assuming the only interaction between the hidden and

the SM sectors is through a heavy mediator at a mass scale M , the effective Yukawa cou-

pling for the neutrinos carries a suppression (Λ/M)3. We then only need (Λ/M) < 10−4
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to explain the hierarchically smaller neutrino masses.

How to produce the observed mixing angles within the framework is still an open

question. No matter how the mixing angle is generated, the mechanism should put strin-

gent constraints to the model. In fact, even before specifying a complete flavor structure,

incorporating leptogenesis and WDM into neutrino models makes predictions that are

experimentally constrained. Here we briefly introduce the ideas and leave the detailed

discussion for Chapter 6 and 7.

As discussed in Sec. 1.2.2, leptogenesis is a plausible idea to generate matter–anti-

matter asymmetry. In the most studied neutrino model, the see-saw mechanism, leptoge-

nesis is realized by the decay of heavy Majorana neutrinos. A Majorana mass term breaks

lepton number, and the CP violating decay of the Majorana neutrinos produces net lep-

ton number, which is then transformed into the SM baryon number through sphaleron

effects. However, leptogenesis does not necessarily come with lepton number violation.

Even for pure Dirac neutrinos, if the scattering process separates the positive and nega-

tive lepton numbers into the SM and hidden sectors, the sphaleron relates only to the SM

lepton number and can still produce the baryon number. The leptogenesis scenario that

conserves lepton number is called Dirac leptogenesis.

In Chapter 6, we explore the possibilities of the standard or Dirac leptogenesis in the

composite neutrino model. We first give a minimal UV completion of the model, and then

identify the decay process that generates the asymmetry. A successful model needs to

satisfy several constraints: the correct active neutrino masses, the right amount of baryon

asymmetry, the out-of-equilibrium condition of the decay process, the separation of the

lepton number between the two sectors, bounds on the light degrees of freedom around

the big-bang nucleosynthesis (BBN), and the potential FCNC given by the mediators.
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We give a model that satisfies all of these constraints while keeping the energy scale for

the decay as low as 10 TeV. This low-energy leptogenesis avoids the gravitino problem,

believed by some people to be a problem in the standard leptogenesis, by allowing a low

reheating temperature.

Besides leptogenesis, neutrinos are also closely related to DM. Sterile neutrinos with

masses at the keV scale are a popular WDM candidate. WDM refers to particles with free-

streaming length comparable to the size of a region which can subsequently evolve into

a dwarf galaxy. This leads to predictions that are very similar to cold dark matter (CDM)

on large scales, including the cosmic microwave background (CMB), galaxy clustering,

and large galaxy rotation curves. Unlike CDM, however, WDM predicts less small-scale

density perturbations. This reduces the predicted abundance of dwarf galaxies and may

lead to a lower density of DM in the central parts of large galaxies, which may be a better

fit to observations.

In the composite neutrino framework, the compensators used to cancel anomalies in

the hidden sector can serve as WDM particles. They can either be thermally produced or

generated through oscillation from the active neutrinos. While the overproduced WDM

is diluted by an out-of-equilibrium decay in the usual case, the required entropy dilution

in this case can be generated by the confinement of the composite neutrino sector. We

discuss the mechanism and various astrophysical bounds in Chapter 7.

1.3.4 Collider constraints on DM

At the end of this thesis, we give an example of how one may set model independent

bounds on UV-theories using experimental results at an IR-scale. The theories we want
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to constrain are DM-models with various DM-SM interactions, and the experiments we

use are the mono-jet and mono-photon searches at Large Electron-Positron Collider (LEP)

and Large Hadron Collider (LHC).

Compared to colliders, direct detection experiments are better designed for constrain-

ing DM interactions with electroweak scale DM masses. The idea of the experiments

is simple — bury sensitive detectors underground and wait for DM particles to bump

into them. However, there are several problems for these type of experiments. First, to

extract the interaction strength from the raw data, one must make several astrophysical

and experimental assumptions. Moreover, all current generation detectors lose sensitiv-

ity when DM particles are lighter than 10 GeV, which is the interesting region where the

experiments DAMA, CoGeNT and CRESS claimed DM observations. Finally, the bounds

become weak if the DM interaction is spin-dependent since the scattering is not coherent

through the nucleons.

Colliders do a better job on all of the above issues. They produce DM particles di-

rectly, and there is no need to know the astrophysical properties of DM in the universe.

The bounds are better for light DM particles since the lighter they are, the easier they

are to produce. Also, there is no coherent scattering of DM particles in colliders and the

spin-dependent interactions are not suppressed relative to spin-independent one. Thus,

colliders provide valuable constraints which are complementary to direct detection re-

sults. For a model independent study, we assume that mediators that generate DM–SM

interactions are heavy enough that the effective coupling description is valid. For ex-

ample, if DM particles are Dirac fermions (χ), the vector coupling to quarks (q) can be

written as

( χ̄ γµχ ) ( q̄ γµq )

Λ2
. (1.3.1)
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Collider experiments set a lower bound on Λ based on the absence of DM signals in the

final results. Since the same coupling is responsible for signals in direct detection, we

can calculate an upper bound on the scattering cross section and compare it to the direct

detection results. In this thesis, we use the mono-jet and mono-photon searches at LEP

and LHC for this project. As we will see, the current constraints can already exclude

some of the DM parameter space. Besides direct detection, the collider bounds can also

be used to calculate bounds for the annihilation cross section of DM particles. In addition,

utilizing current Higgs searches, we can also set interesting bounds for scenarios where

DM couple to the SM particles through a Higgs portal. We discuss this in Chapter 9.
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CHAPTER 2

LEPTON FLAVOR VIOLATION IN RS MODEL

Based on the 2010 article “Warped Penguins”, written in collaboration with Csaba Csáki,

Yuval Grossman, Philip Tanedo and published in Phys.Rev. D83 (2011) 073002.
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2.1 Introduction

The Randall-Sundrum (RS) set up for a warped extra dimension is a novel framework

for models of electroweak symmetry breaking [330]. When fermion and gauge fields are

allowed to propagate in the bulk, these models can also explain the fermion mass spec-

trum through the split fermion proposal [52, 236, 221]. In these anarchic flavor models

each element of the Yukawa matrices can take natural O(1) values because the hierarchy

of the fermion masses is generated by the exponential localization of the fermion wave

functions away from the Higgs field [26, 28].

The same small wavefunction overlap that yields the fermion mass spectrum also

gives hierarchical mixing angles [26, 250, 270, 307] and suppresses tree-level flavor-

changing neutral currents (FCNCs) by the RS-GIM mechanism [26, 28]. This built-in

protection, however, may not always be sufficient to completely protect against the most

dangerous types of experimental FCNC constraints. In the quark sector, for example,

the exchange of Kaluza-Klein (KK) gluons induces left-right operators that contribute to

CP violation in kaons and result in generic bounds of O(10 − 20 TeV) for the KK gluon

mass [150, 93, 124, 113, 31, 95]. To reduce this bound one must either introduce additional

structure (such as horizontal symmetries [334, 152] or flavor equationment [203, 158])

or alternately gain several O(1) factors [18] by promoting the Higgs to a bulk field, in-

ducing loop-level QCD matching, etc. This latter approach is limited by tension with

loop-induced flavor-violating effects [214].

The leptonic sector of the anarchic model is similarly bounded by FCNCs. Agashe,

Blechman and Petriello recently studied the two dominant constraints in the lepton sec-

tor: the loop-induced µ → eγ photon penguin from Higgs exchange and the tree-level

contribution to µ → 3e and µ → e conversion from the exchange of the Z boson KK
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tower [20]. These processes set complementary bounds due to their complementary de-

pendence on the overall magnitude of the anarchic Yukawa coupling, Y∗. While µ→ eγ is

proportional to Y 3
∗ due to two Yukawa couplings and a chirality-flipping mass insertion,

the dominant contribution to µ → 3e and µ → e conversion comes from the nonuniver-

sality of the Z boson near the IR brane. In order to maintain the observed mass spectrum,

increasing the Yukawa coupling pushes the bulk fermion profiles away from the IR brane

and hence away from the flavor-changing part of the Z. This reduces the effective four-

dimensional (4D) FCNC coupling so that these processes are proportional to Y −1
∗ . For a

given KK gauge boson mass, these processes then set an upper and lower bound on the

Yukawa coupling which are usually mutually exclusive.

A key feature of the lepton sector is that one expects large mixing angles rather

than the hierarchical angles in the Cabbibo-Kobayashi-Maskawa (CKM) matrix. One

way to obtain this is by using a global flavor symmetry for the lepton sector [148] (see

also [321, 129]). Including these additional global symmetries can relax the tension be-

tween the two bounds. For example, imposing an A4 symmetry on the leptonic sector

completely removes the tree-level constraints [148]. Another interesting possibility for

obtaining large lepton mixing angles is to have the wavefunction overlap for the neutrino

Yukawa peak near the UV brane [25]. For generic models with anarchic fermions, how-

ever, [20] found that the tension between µ → eγ and tree-level processes (µ → 3e and

µ→ e conversion) push the gauge boson KK scale to be on the order of 5–10 TeV.

The main goal of this paper is to present a detailed one-loop calculation of the µ→ eγ

penguin in the RS model with a brane-localized Higgs and to show that this amplitude is

finite.

To perform the calculation and obtain a numerical result we choose to work in the
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five-dimensional (5D) mixed position/momentum space formalism [325, 121]. This setup

is natural for calculating processes on an interval with brane-localized terms, as shown in

Fig. 2.1. In particular, there are no sums over KK modes, the chiral boundary conditions

are fully incorporated in the 5D propagators, and the UV behavior is clear upon Wick

rotation where the basis of Bessel functions becomes exponentials in the 4D loop momen-

tum. The physical result is, of course, independent of whether the calculation was done

in 5D or in 4D via a KK decomposition. We show explicit one-loop finiteness in the KK

decomposed theory and remark upon the importance of taking into account the correct

number of KK modes relative to the momentum cutoff when calculating finite 5D loops.

flavor rotations. In this basis the only source for flavor violation are the Yukawa couplings, thus
every contribution to the amplitude contains brane-localized Yukawa vertices. If the loop extends
into the bulk then it must be finite by locality. Thus the only potentially divergent contributions
are 4D loops that are fully localized on the IR brane. However, the theory restricted to the IR
brane is a renormalizable 4D theory with no tree-level dipole operators. Thus one can apply
the usual argument that absence of suitable localized counter-terms requires that the µ → eγ
amplitude must be finite in the full 5D theory as well. The behavior of the theory in its UV
limit, i.e. at energies much greater than the curvature of the space, is effectively flat so that our
argument for finiteness holds for a generic 5D theory on an interval, irrespective of warping.

To perform the calculation and get a numerical result we choose to work in the 5D mixed
position/momentum space formalism [10, 11]. This setup is natural for calculating processes on
an interval with brane-localized terms, as shown in Fig. 1. In particular, there are no sums over KK
modes, the chiral boundary conditions are fully incorporated in the 5D propagators, and the UV
behavior is clear upon Wick rotation where the basis of Bessel functions become exponentials in
the 4D loop momentum. The physical result is, of course, independent of whether the calculation
was done in 5D or in 4D via a KK decomposition. We comment briefly in the appendices on the
4D calculation and show explicitly that the KK sum also converges.

µ

γ

e

Figure 1: A contribution to µ → eγ from a brane-localized Higgs. The dashed line represents the
Higgs while the cross represents a Yukawa coupling with a Higgs vev.

The paper is organized as follows: We begin in Section 2 by establishing our conventions
and reviewing the general flavor structure of anarchic Randall-Sundrum models. In Section 3 we
summarize tree-level constraints on the anarchic Yukawa scale and discuss the effect of imposing a
custodial symmetry on the leptonic sector. We then proceed with the main purpose of this work,
the analysis of µ → eγ. The dipole operators involved in this process are discussion in Section 4
and the relevant coefficient is calculated using 5D methods in Section 6. We discuss the origin of
the finiteness of these operators in in Section 5 and conclude with an outlook for further directions
in Section 8. Appendices B and C provide details on the derivation of the 5D position/momentum
space propagators in flat and warped intervals. These results are used in Appendix D to explicitly
demonstrates the cancellation of of the µ → eγ penguin diagrams in the UV limit where the theory
is effectively flat. Finally, in Appendix E we discuss the origin of this finiteness from the point of
view of a KK decomposition.

2

Figure 2.1: A contribution to µ → eγ from a brane-localized Higgs. The dashed line
represents the Higgs while the cross represents a Yukawa coupling with a Higgs vev.

The paper is organized as follows: We begin in Sections 2.2 and 2.3 by reviewing the

flavor structure of anarchic Randall-Sundrum models and summarizing tree-level con-

straints on the anarchic Yukawa scale. We then proceed the analysis of µ → eγ. The

dipole operators involved in this process are discussed in Section 2.4 and the relevant

coefficient is calculated using 5D methods in Section 2.5. In Section 2.6 we discuss the

origin of finiteness in these operators in both the 5D and 4D frameworks. We remark

on subtleties in counting the superficial degree of divergence, the matching of the num-

ber of KK modes with any effective 4D momentum cutoff, and remark on the expected
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two-loop degree of divergence. We conclude with an outlook for further directions in

Section 8.7. In Appendix A.1 we highlight the matching of local 4D effective operators

to nonlocal 5D amplitudes. Next in Appendices A.2 and A.3 we give estimates for the

size of each diagram and analytic expressions for the (next-to)leading µ → eγ diagrams.

Appendices A.4, A.5, and A.6 focus on the formalism of quantum field theory in mixed

position/momentum space, respectively focusing on a discussion of power counting, a

summary of RS Feynman rules, and details on the derivation of the bulk fermion prop-

agators. Finally, in Appendix A.7 we explicitly demonstrate a subtle cancellation in the

single-mass insertion neutral Higgs diagram that is referenced in Section 2.6.

2.2 Review of anarchic Randall-Sundrum models

We now summarize the main results for anarchic RS models. For a review see, e.g.

Refs [157]. We consider a 5D warped interval z ∈ [R,R′] with a UV brane at z = R

and an IR brane at z = R′. The metric is

ds2 =

(
R

z

)2

(dxµdxνη
µν − dz2), (2.2.1)

where we see that R is also the AdS curvature scale so that R/R′ ∼ TeV/MPl. These con-

formal coordinates are natural in the context of the AdS/CFT correspondence but differ

from the classical RS conventions z = R exp(ky) and k = 1/R. The relevant scales have

magnitudes R−1 ∼ MPl and R′−1 ∼ TeV. Fermions are bulk Dirac fields which propagate

in the full 5D space and can be decomposed into left- and right-handed Weyl spinors χ

and ψ̄ via

Ψ(x, z) =

χ(x, z)

ψ̄(x, z)

 . (2.2.2)
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In order to obtain a chiral zero mode spectrum, these fields are subject to the chiral (orb-

ifold) boundary conditions

ψL(xµ, R) = ψL(xµ, R′) = 0 χR(xµ, R) = χR(xµ, R′) = 0, (2.2.3)

where the subscripts L and R denote the SU(2)L doublet (L) and singlet (R) represen-

tations, i.e. the chirality of the zero mode. The fermion bulk masses are given by c/R

where c is a dimensionless parameter controlling the localization of the normalized 5D

zero mode profiles,

χ(0)
c (x, z) =

1√
R′

( z
R

)2 ( z
R′

)−c
fc χ

(0)
c (x) and ψ(0)

c (x, z) = χ
(0)
−c(x, z),(2.2.4)

where we have defined the usual RS flavor function

fc =

√
1− 2c

1− (R/R′)1−2c
. (2.2.5)

We assume that the Higgs is localized on the IR brane. The Yukawa coupling is

SYuk =

∫
d4x

(
R

R′

)4

Ēi (RYij)Lj ·H + h.c. (2.2.6)

where Yij is a dimensionless 3×3 matrix such that (Y5)ij = RYij is the dimensionful pa-

rameter appearing in the 5D Lagrangian. In the anarchic approach Y is assumed to be

a random matrix with average elements of order Y∗. After including all warp factors

and rescaling to canonical fields the effective 4D Yukawa and mass matrices for the zero

modes are

ySM
ij = fcLiYijf−cRj mij =

v√
2
ySM
ij , (2.2.7)

so that the fermion mass hierarchy is set by the f1 � f2 � f3 structure for both left- and

right-handed zero modes. In other words, the choice of c for each fermion family intro-

duces additional flavor structure into the theory which generates the zero mode spectrum

while allowing the fundamental Yukawa parameters to be anarchic.

25



In the Standard Model the diagonalization of the fermion masses transmits the flavor

structure of the Yukawa sector to the kinetic terms via the CKM matrix where it is man-

ifested in the flavor-changing charged current through the W± boson. We shall use the

analogous mass basis in Section 2.3 for our calculation of the Yukawa constraints from

µ → 3e and µ → e conversion operators. The key point is that in the gauge basis the

interaction of the neutral gauge bosons is flavor diagonal but not flavor universal. The

different fermion wave functions cause the overlap integrals to depend on the bulk mass

parameters. Once we rotate into the mass eigenbasis we obtain flavor changing couplings

for the neutral KK gauge bosons.

In the lepton sector this does not occur for the zero mode photon since its wave-

function remains flat after electroweak symmetry breaking and hence µ → eγ remains

a loop-level process. Thus for the primary analysis of this paper we choose a basis where

the 5D fields are diagonal with respect to the bulk masses while the Yukawas are com-

pletely general. In this basis all of the relevant flavor-changing effects occur due to the

Yukawa structure of the theory with no contributions from W loops. In the Standard

Model, this corresponds to the basis before diagonalizing the fermion masses so that all

flavor-changing effects occur through off-diagonal elements in the Yukawa matrix mani-

fested as mass insertions or Higgs interactions. This basis is particularly helpful in the 5D

mixed position/momentum space framework since the Higgs is attached to the IR brane,

which simplifies loop integrals.

2.3 Tree-level constraints from µ→ 3e and µ→ e conversion

For a fixed KK gauge boson mass MKK, limits on µ → 3e and µ → e conversion in nuclei

provide the strongest lower bounds on the anarchic Yukawa scale Y∗. These tree-level
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processes are parameterized by Fermi operators generated by Z and Z ′ exchange, where

the prime indicates the KK mode in the mass basis. The effective Lagrangian for these

lepton flavor-violating Fermi operators are traditionally parameterized as [127]

L =
4GF√

2
[g3(ēRγ

µµR)(ēRγµeR) + g4(ēLγ
µµL)(ēLγ

µeL) + g5(ēRγ
µµR)(ēLγµeL)

+g6(ēLγ
µµL)(ēRγµeR)] +

GF√
2
ēγµ(v − aγ5)µ

∑
q

q̄γµ(vq − aqγ5)q, (2.3.8)

where we have only introduced the terms that are non-vanishing in the RS set up, and use

the normalization where vq = T q3 − 2Qq sin2 θ. The axial coupling to quarks, aq, vanishes

in the dominant contribution coming from coherent scattering off the nucleus. The g3,4,5,6

are responsible for µ → 3e decay, while the v, a are responsible for µ → e conversion in

nuclei. The rates are given by (with the conversion rate normalized to the muon capture

rate):

Br(µ→ 3e) = 2(g2
3 + g2

4) + g2
5 + g2

6 , (2.3.9)

Br(µ→ e) =
peEeG

2
FF

2
pm

3
µα

3Z4
eff

π2ZΓcapt

Q2
N(v2 + a2), (2.3.10)

where the parameters for the conversion depend on the nucleus and are calculated in

the Feinberg-Weinberg approximation [199] and we write the charge for a nucleus with

atomic number Z and neutron number N as

QN = vu(2Z +N) + vd(2N + Z). (2.3.11)

. The most sensitive experimental constraint comes from muon conversion in 48
22Ti, for

which

Ee ∼ pe ∼ mµ, Fp ∼ 0.55, Zeff ∼ 17.61, Γcapt ∼ 2.6 · 106

s
.(2.3.12)

We now consider these constraints for a minimal model (where feL = feR , fµL = fµR) and

for a model with custodial protection.
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2.3.1 Minimal RS model

In order to calculate the coefficients in the effective Lagrangian (2.3.8), we need to es-

timate the flavor-violating couplings of the neutral gauge bosons in the theory. In the

basis of physical KK states all lepton flavor-violating couplings are the consequence of

the non-uniformity of the gauge boson wave functions. Let us first consider the effect of

the ordinary Z boson, whose wave function is approximately (we use the approximation

(2.19) of [149] with a prefactor for canonical normalization)

h(0)(z) =
1√

R log R′

R

[
1 +

M2
Z

4
z2
(

1− 2 log
z

R

)]
. (2.3.13)

The coupling of the Z to fermions can be calculated by performing the overlap integral

with the fermion profiles in (3.2.4) and is found to be

gZff = gZSM

(
1 +

(MZR
′)2 log R′

R

2(3− 2c)
f 2
c

)
. (2.3.14)

After rotating the fields to the mass eigenbasis we find that the off-diagonal coupling of

the Z boson to charged leptons is given by the nonuniversal term and is approximately

gZeµL,R ≈
(
gZSM

)L,R
∆(0)
eµ ≡

(
gZSM

)L,R (MZR
′)2 log R′

R

2(3− 2c)
feL,RfµL,R . (2.3.15)

Using these couplings one can estimate the coefficients of the 4-Fermi operators in

(2.3.8),

g3,4 = 2g2
L,R∆(0)

eµ g5,6 = 2gLgR∆(0)
eµ (v ± a) = 2gL,R∆(0)

eµ ,(2.3.16)

where the gL,R are proportional to the left- and right-handed charged lepton couplings to

the Z in the Standard Model, gL = −1
2

+ s2
W and gR = s2

W . The Z ′ exchange contribution

to µ → 3e (µ → e) is a 15% (5%) correction and the γ′ exchange diagram is an additional

5% (1%) correction; we shall ignore both here. We make the simplifying assumption that
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feL = feR and fµL = fµR and then express these in terms of the Standard Model Yukawa

couplings as f =
√
λ/Y∗. The expressions for the lepton flavor-violating processes are

then

Br(µ→ 3e) = 10−13

(
3 TeV

MKK

)4(
2

Y∗

)2

(2.3.17)

Br(µ→ e)Ti = 2 · 10−12

(
3 TeV

MKK

)4(
2

Y∗

)2

. (2.3.18)

The current experimental bounds are Br(µ → 3e) < 10−12 [78] and Br(µ → e)Ti <

6.1 · 10−13 [354] so that µ→ e conversion provides the most stringent constraint,(
3 TeV

MKK

)2(
2

Y∗

)
< 0.5. (2.3.19)

For a 3 TeV Z ′, the anarchic Yukawa scale must satisfy Y∗ & 3.7, which agrees with [20].

2.3.2 Custodially protected model

Since the bound in (2.3.19) is model dependent, one might consider weakening this con-

straint by having the leptons transform under the custodial group

SU(2)L × SU(2)R × U(1)X × PLR, (2.3.20)

where PLR is a discrete L ↔ R exchange symmetry. Such a custodial protection was

introduced in [22] to eliminate large corrections to the Zbb̄ vertex in the quark sector. It

was later found that this symmetry also eliminates some of the FCNCs in the Z sector [31]

so that one might also expect it to alleviate the lepton flavor violation bounds. We shall

now estimate the extent to which custodial symmetry can relax the bound on Y∗. Further

discussion including neutrino mixing can be found in [17].
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To custodially protect the charged leptons one choses the (L,R)X representation (2,2)0

for the left-handed leptons, (3,1)0 ⊕ (1,3)0 for the charged right-handed leptons, and

(1,1)0 for the right-handed neutrinos. There are two neutral zero mode gauge bosons,

the Standard Model Z and γ, and three neutral KK excitations, γ′, Z ′ and ZH , where the

latter two are linear combinations of the Z and ZX boson modes. The coupling of the left

handed leptons to the ordinary Z and the Z ′ are protected since those couplings are ex-

actly flavor universal in the limit where PLR is exact. The breaking of PLR on the UV brane

leads to small residual contributions which we neglect. The remaining flavor-violating

couplings for the left-handed leptons come from the exchange of ZH and the γ′, while the

right-handed leptons are unprotected.

Since (v − a) couples to right-handed leptons its coupling is unprotected and is the

same as in (2.3.16). For (v+ a), on the other hand, the leading-order effect comes from the

Z(1) component of the ZH , whose composition in terms of gauge KK states is [31]

ZH = cos ξZ(1) + sin ξZ
(1)
X + βZ(0), (2.3.21)

where Z(0) is the flat zero mode Z-boson which does not contribute to FCNCs, cos ξ ≈√
1
2
− s2

W/cW , and β is a small correction of order O(v2/M2
KK). The flavor-changing cou-

pling of the KK gauge bosons is analogous to that of KK gluons in [150],

gZ
(1)eµ

L,R ≈
(
gZSM

)L,R
∆L,R(1)
eµ ≡

(
gZSM

)L,R√
log

R′

R
γc feL,RfµL,R , (2.3.22)

where

γc =

√
2

J1(x1)

∫ 1

0

dx x1−2cJ1(x1 x) ≈
√

2

J1(x1)

0.7x1

2(3− 2c)
(2.3.23)

and x1 = MKKR
′ is the first zero of J0(x). The analogous γ(1) coupling is given by gZSM → e.

Taking into account the ZH and γ(1), the (v + a) effective coupling to left-handed leptons

is

(v + a) = 2gL gKK
M2

Z

M2
KK

(
cos2 ξ +

QZX
N

QN

cos ξ sin ξ

)
∆L(1)
eµ + 2s2

W c
2
W gKK

M2
Z

M2
KK

Qγ
N

QN

∆L(1)
eµ .(2.3.24)
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The cos ξ sin ξ term in the parenthesis represents the Z
(1)
X component of the ZH which

couples to the quarks in the nucleus via

QZX
N = − 1√

2
cW cos ξ (5Z + 7N)− 2

√
2

cos ξ
sW

g′

g
(Z +N), gKK =

1√
logR′/R

.(2.3.25)

The gKK factor gives the universal (flavor-conserving) coupling of KK gauge bosons to

zero mode fermions. Qγ
N is the electric charge of the nucleus normalized according to

(2.3.10), Qγ
N = 2Z.

Minimizing over the flavor factors feL,R and fµL,R subject to the zero mode fermion

mass spectrum and comparing to the experimental bound listed above (2.3.19), we find

that the conversion rate must satisfy(
3 TeV

MKK

)2(
2

Y∗

)
< 1.6. (2.3.26)

lowering the bound to Y∗ & 1 for a 3 TeV KK gauge boson scale.

2.4 Operator analysis of µ→ eγ

We work in ’t Hooft–Feynman gauge (ξ = 1) and a flavor basis where all bulk masses ci

are diagonal. The 5D amplitude for µ→ eγ takes the form

CH · L̄iσMNEjFMN , (2.4.27)

where it is understood that the 5D fields should be replaced by the appropriate external

states which each carry an independent z position in the mixed position/momentum

space formalism. These positions must be separately integrated over when matching to

an effective 4D operator so that (2.4.27) can be thought of as a dimension-8 5D scattering

amplitude whose prefactor C is a function of the external state positions, as explained in
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Appendix A.1. When calculating this amplitude in the mixed position/momentum space

formalism, the physical external state fields have definite KK number, which we take to be

zero modes. The external field profiles and internal propagators depend on 4D momenta

and z-positions so that vertex z-positions are integrated from z = R to z = R′ while loop

momenta are integrated as usual.

After plugging in the wave functions for the fermion and photon zero modes, includ-

ing all warp factors, matching the gauge coupling, and expanding in Higgs-induced mass

insertions, the leading order 4D operator and coefficients for µ→ eγ are

R′2
e

16π2

v√
2
fLi

(
ak`YikY

†
k`Y`j + bijYij

)
f−Ej L̄

(0)
i σµνE

(0)
j F (0)

µν + h.c. (2.4.28)

The term proportional to three Yukawa matrices comes from the diagrams shown in

Figs. 2.2 and 2.3, while the single-Yukawa term comes from those in Fig. 2.4. In the limit

where the bulk masses are universal, we may treat the Yukawas as spurions of the U(3)3

lepton flavor symmetry and note that these are the products of Yukawas required for a

chirality-flipping, flavor-changing operator.

In anarchic flavor models, however, the bulk masses for each fermion species is in-

dependent and introduce an additional flavor structure into the theory so that the U(3)3

lepton flavor symmetry is not restored even in the limit Y → 0. The indices on the di-

mensionless ak` and bij coefficients encode this flavor structure as carried by the internal

fermions of each diagram. Because the lepton hierarchy does not require very different

bulk masses, both ak` and bij are nearly universal.

Next note that the zero-mode mass matrix (3.2.7) introduces a preferred direction in

flavor space which defines the mass basis. In fact, up to the non-universality of bij , the

single-Yukawa term in (2.4.28) is proportional to—or equationed—with (3.2.7). Hence

upon rotation to the mass basis, the off-diagonal elements of this term are typically much
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smaller than its value in the flavor basis [21, 65] and would be identically zero if the

bulk masses were universal. Given a set of bulk mass parameters, the extent to which

a specific off-diagonal element of the bij term is suppressed depends on the particular

structure of the anarchic 5D Yukawa matrix. This is a novel feature since the structure of

the underlying anarchic Yukawa is usually washed out in observables by the hierarchies

in the fc flavor functions.

On the other hand, a product of anarchic matrices typically indicates a very different

direction in flavor space from the original matrix so that the aij term is not equationed

and we may simplify the product to∑
k,`

ak`YikY
†
k`Y`j = aY 3

∗ (2.4.29)

for each i and j. Here we have defined the prefactor a; different definitions can include

an overall O(1) factor from the sum over anarchic matrix elements. We have used the

anarchic limit and the assumption that neither ak` nor bij vary greatly over realistic bulk

mass values. This assumption is justified in Section 2.5 where we explicitly calculate these

coefficients to leading order. Further, we have assumed that the scales of the anarchic

electron and neutrino Yukawa matrices are the same so that (YE)ij ∼ (YN)ij ∼ Y∗.

To determine the physical µ → eγ amplitude from this expression we must go to the

standard 4D mass eigenbasis by performing a bi-unitary transformation to diagonalize

the Standard Model Yukawa,

λSM = ULλ
(diag)U †R, (2.4.30)

where the magnitudes of the elements of the unitary matrices UL,R are set, in the anarchic

scenario, by the hierarchies in the flavor constants

(UL)ij ∼
fLi
fLj

for fLi < fLj . (2.4.31)
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For future simplicity, let us define the relevant part of the bijYij matrix after this rotation,

bY∗ =
∑
k,`

(UL)2kbk`Yk`(U
†
R)`1. (2.4.32)

The traditional parameterization for the µ→ eγ amplitude is written as [20]

−iCL,R
2mµ

ūL,R σ
µν uR,LFµν , (2.4.33)

where uL,R are the left- and right-handed Dirac spinors for the leptons. Comparing

(2.4.28) with (8.6.11) and using the magnitudes of the off-diagonal terms in the UL ro-

tation matrix in (2.4.31), we find that in the mass eigenbasis the coefficients are given

by

CL =
(
aY 3
∗ + bY∗

)
R′2

e

16π2

v√
2

2mµfL2f−E1 , (2.4.34)

CR =
(
aY 3
∗ + bY∗

)
R′2

e

16π2

v√
2

2mµfL1f−E2 . (2.4.35)

The µ→ eγ branching fraction and its experimental bound are given by

Br(µ→ eγ)thy =
12π2

(GFm2
µ)2

(|CL|2 + |CR|2), (2.4.36)

Br(µ→ eγ)exp < 1.2 · 10−11. (2.4.37)

While the generic expression for Br(µ → eγ) depends on the individual wave functions

fL,−E , the product CLCR is fixed by the physical lepton masses and the relation C2
L+C2

R ≥

2CLCR so that one can put a lower bound on the branching ratio

Br(µ→ eγ) ≥ 6
∣∣aY 2
∗ + b

∣∣2 α

4π

(
R′2

GF

)2
me

mµ

≈ 5.1 · 10−8
∣∣aY 2
∗ + b

∣∣2(3 TeV

MKK

)4

.(2.4.38)

Thus for a 3 TeV KK gauge boson scale we obtain an upper bound on Y∗

|aY 2
∗ + b|

(
3 TeV

MKK

)2

≤ 0.015. (2.4.39)

Note that the b coefficient is independent of Y∗ so that sufficiently large b can rule out the

assumption that the 5D Yukawa matrix can be completely anarchic—i.e. with no assumed
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underlying flavor structure—at a given KK scale no matter how small one picks Y∗. This

is a new type of constraint on anarchic flavor models in a warped extra dimension. Con-

versely, if b is of the same order as a and has the opposite sign, then the bounds on the

anarchic scale Y∗ are alleviated. We will show below that b is typically suppressed relative

to a but can, in principle, take a range of values between b = −0.5 and 0.5. For simplicity

we may use the case b = 0 as a representative and plausible example, in which case the

bound on the anarchic Yukawa scale is

Y∗ ≤ 0.12 |a|− 1
2 . (2.4.40)

In Section 2.5.4 we quantify the extent to which the b term may affect this bound. Com-

bined with the lower bounds on Y∗ from tree-level processes in Section 2.3, this bound

typically introduces a tension in the preferred value of Y∗ depending on the value of a.

In other words, it can force one to either increase the KK scale or introduce additional

symmetry structure into the 5D Yukawa matrices which can reduce a in (2.4.29) or force a

cancellation in (2.4.39).

2.5 Calculation of µ→ eγ in a warped extra dimension

In principle, there are a large number of diagrams contributing to the a and b coefficients

even when only considering the leading terms in a mass insertion expansion. These are

depicted in Figs. 2.2–2.4. Fortunately, many of these diagrams are naturally suppressed

and the dominant contribution to each coefficient is given by the two diagrams shown in

Fig. 2.5. Analytic expressions for the leading and next-to-leading diagrams are given in

Appendix A.3 along with an estimate of the size of each contribution.

The flavor structure of the diagrams contributing to the b coefficient is equationed with
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Figure 2.2: Neutral boson diagrams contributing to the a coefficient defined in (2.4.29).
Fermion arrows denote the zero mode chirality, i.e. the SU(2) representation. External legs
whose arrows do not point outward have an implicit external mass insertion. Dotted lines
represent the fifth component of a bulk gauge field. Analytic forms for these diagrams
are given in Appendix A.3.

the fermion zero-mode mass matrix [28, 20, 18]. The rotation of the external states to mass

eigenstates thus suppresses these diagrams up to the bulk mass (c) dependence of internal

propagators which point in a different direction in flavor space and are not equationed.

Since KK modes do not carry very strong bulk mass dependence, the diagrams which

typically give the largest contribution after equationment are those which permit zero

mode fermions in the loop. We provide a precise definition of the term “typically” in

Section 2.5.2.

The Ward identity requires that the physical amplitude for a muon of momentum p to

decay into a photon of polarization ε and an electron of momentum p′ takes the form

M = εµMµ ∼ εµūp′ [(p+ p′)µ − (mµ +me)γ
µ]up. (2.5.41)

This is the combination of masses and momenta that gives the correct chirality-flipping

tensor amplitude in (8.6.11). This simplifies the calculation of this process since one only

has to identify the coefficient of the ūp′(p + p′)µu term to determine the entire amplitude;

all other terms are redundant by gauge invariance [287]. The general strategy is to use
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Figure 2.3: Charged boson diagrams contributing to the a coefficient following the con-
ventions in Fig. 2.2. Analytic forms for these diagrams are given in Appendix A.3.

the Clifford algebra and the equations of motion for the external spinors to determine this

coefficient. This allows us to directly write the finite physical contribution to the ampli-

tude without worrying about the regularization of potentially divergent terms which are

not gauge invariant. In Section 2.6.1 we will further use this observation to explain the

finiteness of this amplitude in 5D.

In addition to the diagrams in Figs. 2.2–2.4, there are higher-order diagrams with an

even number of additional mass insertions and brane-to-brane propagators. Following

the Feynman rules in Appendix A.5, each higher-order pair of mass insertions is sup-

pressed by an additional factor of(
/k

k

R′4

R4
· (−i)R

3

R′3
RY∗

v√
2

)2

∼ 1

2
(Y∗R

′v)
2 ∼ O(10−2), (2.5.42)

since we assume anarchic Yukawa matrices, Y∗ ∼ 2. We are thus justified in considering

only the leading-order terms in the mass insertion approximation.

We now present the leading contributions to the a and b coefficients. Other diagrams

give a correction on the order of 10% of these results. We provide explicit formulas and

numerical estimates for the next-to-leading order corrections in Appendix A.3.
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Figure 2.4: Diagrams contributing to the b coefficient following the conventions in Fig. 2.2.
Not shown: zero mass-insertion Z5 diagram. Analytic forms for these diagrams are given
in Appendix A.3.

2.5.1 Calculation of a

We now calculate the leading-order contribution to the amplitude to determine the a co-

efficient in (2.4.29). As discussed above, it is sufficient to compute the coefficient of the

(p + p′)µ term in the amplitude. The dominant contribution to a comes from the W bo-

son diagrams in Fig. 2.5a. This is because diagrams with 5D gauge bosons are enhanced

relative to the Higgs diagrams by a factor of lnR′/R ∼ 37. Further, theW diagrams are en-

hanced over the Z diagrams due to the size of their respective Standard Model couplings

to leptons. Additional suppression factors can arise from the structure of each diagram

and are discussed in Appendix A.2. Explicit calculation confirms that the W loop with

two internal mass insertions indeed gives the leading contribution to a.

The charged and neutral boson diagrams have independent flavor structures,

(YEY
†
NYN)µe and (YEY

†
EYE)µe respectively. The anarchic Yukawa assumption implies that

both of these terms should be of the same order, Y 3
∗ . However one must remember that

there may be a relative sign between these contributions depending on the specific an-
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archic YN and YE matrices. In other words, a = acharged ± aneutral where the sign cannot

be specified generically. However, because aneutral � acharged, we ignore the neutral bo-

son loops, though these neutral boson diagrams may become appreciable if one allows a

hierarchy between the overall scales of the YN and YE matrices.

The W loop in Fig. 2.5a contains an implicit mass insertion on the external muon leg.

As explained in Appendix A.2, the 5D fermion propagator between this mass insertion

and the loop vertex is dominated by the KK mode which changes fermion chirality. This is

because the chirality-preserving piece of the propagator goes like /p. Invoking the muon

equation of motion gives a factor of f (0)
µ (vR′)f

(0)
µ ∼ (mµR

′) for the external leg. This is

much smaller than the f (0)
µ (vR′)f

(KK)
µ factor from the chirality-flipping part of the propa-

gator. Compared to the mass insertion connecting the zero mode external muon to a KK

intermediate state, the mass insertion connecting two zero mode fermions is smaller by a

factor of the exponentially suppressed zero mode profile1.

Using the Feynman rules in Appendix A.5, the amplitude this diagram is

Mµ|(p+p′) =
i

16π2
(R′)2fcLµY

3
∗ f−cEe

ev√
2

(
g2

2
ln
R′

R

)(
R′v√

2

)2

I2MIW ūp′(p+ p′)µup,(2.5.43)

where I2MIW = −0.31 is a dimensionless loop integral. Taking R′v/
√

2 = .17 and

g2/2 ln(R′/R) = 7.3, the a coefficient in (2.4.29) is

a = −0.065. (2.5.44)

2.5.2 Calculation of b

As discussed above, the diagrams contributing to b are sensitive to the structure of the an-

archic Yukawa matrix relative to that of the non-universal internal bulk fermion masses.
1We thank Martin Beneke, Paramita Dey, and Jürgen Rohrwild for pointing this out.
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(a) W (b) H±,W

(b) Z

Figure 2.5: The leading diagrams contributing to the a and b coefficients following the
same conventions as Fig. 2.2.

For example, if the bulk mass parameters were universal, then the b coefficient operator

would be equationed and the off-diagonal element would vanish. The sign of this off-

diagonal term is a function of the initial anarchic matrix so that the b term may interfere

constructively or destructively with the a term calculated above. We numerically gener-

ate anarchic matrices whose elements have random sign and random values between 0.5

and 2 to determine the distribution of probable Yukawa structures. Such a distribution is

peaked about zero so that the choice b = 0 is a reasonable simplifying assumption. For a

more detailed description of the range of bounds accessible by the anarchic RS scenario,

one may use the 1σ value of |b| as characteristic measure of how large an effect one should

expect from generic anarchic Yukawas.

The dominant contributions to the b coefficient are shown in Fig. 2.5b. These are the

diagram with a charged Goldstone and a W in the loop and the diagram with a Z and
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a single mass insertion in the loop. Following the analysis in in Appendix A.2.4, these

diagrams can have zero mode fermions propagating in the loop and hence are sensitive

to the bulk mass parameters of the internal fermions being summed in the loop. This, in

turn, implies that the diagrams are more robust against equationment upon rotating to

the zero mode mass basis.

The amplitudes associated with this diagram are

M(1MIZ)|(p+p′)µ =
i

16π2
(R′)

2
fcLYEf−cE

ev√
2

(
gZLgZR ln

R′

R

)
× I1MIZ , (2.5.45)

M(0MIHW )|(p+p′)µ =
i

16π2
(R′)

2
fcLYEf−cE

ev√
2

(
g2

2
ln
R′

R

)
× I0MIHW , (2.5.46)

where gZL,R is the Standard Model coupling of the Z to left- and right-handed leptons

respectively. The values for the dimensionless integrals are given in (A.3.12) and (A.3.13).

After scanning over anarchic matrices as defined above, the 1σ value for the b coeffi-

cient is

∣∣b1σ
∣∣ = 0.03. (2.5.47)

Here we take the 1σ value of the b coefficient assuming the bulk masses of the minimal

model cL = cR as a representative benchmark for a plausible general estimate of the

generically allowed range of b.

2.5.3 Modifications in custodial modes

In Section 2.3.2 it was shown that custodial symmetry weakens the bounds from tree-level

FCNCs. Since we would like to assess the tension between tree- and loop-level bounds,

we should also examine the effect of the additional custodial modes on µ → eγ. These

41



additional diagrams are described by the same topologies as those in Figs. 2.2–2.4 but

differ by replacing internal lines with custodial bosons and fermions. The expression

for the amplitude differs by coupling constants and the use of propagators with differ-

ent boundary conditions, but not in the overall structure of each amplitude and so are

straightforward to extract from the minimal model expressions. The leading topologies

are unchanged so that it is sufficient to consider the custodial versions of the diagrams in

Fig. 2.5.

For the two-mass-insertion W diagram, there are two additional diagrams with cus-

todial fermions: one with a WL and the other with a WR in the loop. The PLR symmetry

enforces that the couplings are identical while the different boundary conditions modify

the definitions of the internal propagators so that the only difference comes from the value

of the dimensionless integral in (2.5.43). The each diagram contributes a dimensionless

integral I = −0.2, so that the a coefficient is modified to

acust. = −0.15. (2.5.48)

Custodial diagrams do not contribute to the b coefficient at leading order. For example,

one might consider the diagram with a Z loop where the Z is replaced by a ZX , the

orthogonal mixture of the custodial X and W 3
R bosons. However, leptons carry no X

charge so that the effective coupling is only to right chiral modes. For µR → eLγ, such a

diagram would not be allowed. The leading custodial b coefficient diagrams are an order

of magnitude smaller than the minimal model diagrams and we shall ignore them in this

paper.
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Figure 2.6: Bounds on the anarchic Yukawa and KK scales in the minimal (a) and custodial
(b) models from tree- and loop-level constraints, (2.3.19), (2.3.26), and (2.4.39). Each curve
rules out the region to its left. The solid hyperbola is the appropriate tree-level bound.
The thick solid straight line is the b = 0 loop-level bound. The red dashed (blue dotted)
curve is the loop-level bounds in the case where b has the same (opposite) sign as a and
takes its 1σ magnitude |b| = |b|1σ = 0.03.

2.5.4 Constraints and tension

We can now estimate the upper bound on the anarchic Yukawa scale Y∗ in (2.4.39),

∣∣aY 2
∗ + b

∣∣ (3 TeV

MKK

)2

≤ 0.015.2.4.39 (2.5.49)

First let us consider the scenario where the b coefficient takes its statistical mean value,

b = 0, and MKK = 3TeV. In this case the minimal model suffers a O(10) tension between

the tree-level lower bound on Y∗ and the loop-level upper bound,

Y∗ > 4 Y∗ < 0.5. (2.5.50)

The custodial model slightly alleviates this tension,

Y∗ > 1.25 Y∗ < 0.3. (2.5.51)
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These discrepancies should be interpreted as an assessment on the extent to which the 5D

Yukawa matrices may be generically anarchic. The tension in the bounds above imply

that for MKK = 3TeV, one must accept some mild tuning in the relative sizes of the 5D

Yukawa matrix. This is shown by the hyperbola and solid line in Fig. 2.6.

Alternately, one may ask that assuming totally anarchic Yukawas, what is the mini-

mum value of MKK for which the tension is alleviated? In the minimal model the tree-

and loop-level bounds allow mutually consistent Yukawa scales for MKK > 6 starting at

Y = 1. Similarly, for the custodial model the tree- and loop-level bounds allow consistent

values for MKK > 4.75 starting at Y = 0.5.

Next one may consider the effect of the b coefficient which is sensitive to the particular

flavor structure of the anarchic 5D Yukawa matrix relative to the choice of fermion bulk

mass parameters. The 1σ range of b values for randomly generated anarchic matrices

is b ∈ (−0.03, 0.03). Because this term is independent of Y∗, the value of b can directly

constraint the KK scale. For the 1σ value this sets MKK & 4 TeV, as can be seen from

the intersection of the red dashed lines and blue dotted lines with the horizontal axes in

Fig. 2.6.

The most interesting range for b, however, is the regime where it can cancel the a term

in term in (2.4.39). In such a regime the loop level bounds can deviate significantly from

the prediction with only the a coefficient, allowing one to relax the constraints on Y∗ and

MKK. However, because the 1σ value of b is an order of magnitude smaller than a in the

lepton sector, this region is disfavored by tree-level bounds. For broad model-building

purposes, the key point is that the effect of the b coefficient lines in Fig. 2.6 represent the

freedom to reduce (or enhance) the loop-level constraints through the misequationment

of the anarchic Yukawas relative to the bulk masses. This misequationment comes from
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the choice of two independent spurions in flavor space and is not a tuning in the hierar-

chies of the Yukawa matrices.

In Fig. 2.6 the red dashed line shows the bound when b takes its 1σ magnitude and

has an opposite sign from a; the cusp at MKK = 0 represents the case where the a and

b terms cancel. The blue dotted line shows the case where b takes its 1σ magnitude and

has the same sign as a. What is important to note is that as one takes |b| less than |b|1σ,

these lines continuously converge upon the straight line corresponding to b = 0 so that

any combination of Y∗ and MKK between the upper red dashed line and the blue dotted

line can be plausibly achieved within the anarchic paradigm. Let us make the caveat that

the above values are estimates at O(10%) accuracy. Specific results depend on model-

dependent factors such as the extent to which the matrices are anarchic, the relative scale

of the charged lepton and neutrino anarchic values, or extreme values for bulk masses.

For completeness we provide analytic formulas for the leading and next-to-leading order

diagrams in Appendix A.3.

2.6 Power counting and finiteness

We now develop an intuitive understanding of the finiteness of this 5D process, highlight

some subtleties associated with the KK versus 5D calculation of the loop diagrams2, and

estimate the degree of divergence of the two-loop result. Our primary tool is naı̈ve di-

mensional analysis, from which we may determine the superficial degree of divergence

for a given 5D diagram. Special care is given to the treatment of brane-localized fields

and the translation between the manifestly 5D and KK descriptions.

2The finiteness of dipole operators has been investigated in gauge-higgs unified models where a higher-
dimensional gauge invariance can render these terms finite [14]. Here we do not assume the presence of
such additional symmetries.
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2.6.1 4D and 5D theories of bulk fields

It is instructive to review key properties of µ→ eγ in the Standard Model. This amplitude

was calculated by several authors [287, 131, 322, 297, 288]. Two key features are relevant

for finiteness:

1. Gauge invariance cancels the leading order divergences. The Ward identity re-

quires qµMµ = 0, whereMµ is the amplitude with the photon polarization peeled

off and qµ is the photon momentum. This imposes a nontrivial q-dependence onM

and reduces the superficial degree of divergence by one.

2. Lorentz invariance prohibits divergences which are odd in the loop momentum, k.

In other words,
∫
d4k /k/k2n = 0. After accounting for the Ward identity, the leading

contribution to the dipole operator is odd in k and thus must vanish. Specifically,

one of the /k terms in a fermion propagator must be replaced by the fermion mass

m.

Recall that the chiral structure of this magnetic operator requires an explicit internal mass

insertion. In the Standard Model this is related to both gauge and Lorentz invariance so

that it does not give an additional reduction in the superficial degree of divergence. Before

accounting for these two features, naı̈ve power counting in the loop integrals appears to

suggest that the Standard Model amplitude is logarithmically divergent from diagrams

with two internal fermions and a single internal boson. Instead, one finds that these

protection mechanisms force the amplitude to go as M−2 where M is the characteristic

loop momentum scale.

We can now extrapolate to the case of a 5D theory. First suppose that the theory is

modified to include a noncompact fifth dimension: then we could trivially carry our results
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from 4D momentum space to 5D except that there is an additional loop integral. By

the previous analysis, this would give us an amplitude that goes as M−1 and is thus

finite. Such a theory is not phenomenologically feasible but accurately reproduces the UV

behavior of a bulk process in a compact extra dimension so long as we consider the UV

limit where the loop momentum is much larger than the compactification and curvature

scales. This is because the UV limit of the loop probes very small length scales that are

insensitive to the compactification and any warping. This confirms the observation that

µ → eγ in Randall-Sundrum models with all fields (including the Higgs) in the bulk is

UV–finite [20]. In the case where there are brane-localized fields, this heuristic picture is

complicated since the µ→ eγ loop is intrinsically localized near the brane and is sensitive

to its physics; we address this issue below.

2.6.2 Bulk fields in the 5D formalism

We may formalize this power counting in the mixed position/momentum space formal-

ism. This also generalizes the above argument to theories on a compact interval. Each

loop carries an integral d4k and so contributes +4 to the superficial degree of divergence.

We can now consider how various features of particular diagrams can render this finite.

1. Gauge invariance (p + p′). As argued above and shown explicitly in (2.5.41), the

Ward identity identifies the gauge invariant contribution to this process to be pro-

portional to (p+ p′)µ, which reduces the overall degree of divergence by one.

2. Bulk Propagators. The bulk fermion propagators in the mixed posi-

tion/momentum space formalism have a momentum dependence of the form /k/k ∼

1 while the bulk boson propagators go like 1/k. This matches the power counting
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from summing a tower of KK modes. Note that this depends on k =
√
k2 so that the

Lorentz invariance in Section 2.6.1 for a noncompact extra dimension is no longer

valid.

3. Bulk vertices (dz), overall z-momentum conservation. Each bulk vertex carries

an integral over the vertex position which brings down an inverse power of the

momentum flowing through it. This can be seen from the form of the bulk propa-

gators, which depend on z in the dimensionless combination kz up to overall warp

factors. In the Wick-rotated UV limit, the integrands reduce to exponentials so that

their integrals go like 1/k. In momentum space this suppression is manifested as the

momentum-conserving δ function in the far UV limit where the loop momentum is

much greater than the curvature scale.

An alternate and practical way to see the 1/k scaling of an individual dz integral

comes from the Jacobian as one shifts to dimensionless integration variables,

y = kER
′ x = kEz (2.6.52)

so that y ∈ [0,∞] plays the role of the loop integrand and x ∈ [yR/R′, y] plays

the role of the integral over the interval extra dimension. These are the natural

objects that appear as arguments in the Bessel functions contained in the bulk field

propagators, as demonstrated in Appendix A.6.3. In these variables each dx brings

down a factor of 1/y from the Jacobian of the integration measure. These variables

are natural choices because they relate distance intervals in the extra dimension to

the scales that are being probed by the loop process. The physically relevant distance

scales are precisely these ratios.

4. Overall z-momentum conservation. We must make one correction to the bulk ver-

tex suppression due to overall z-momentum conservation. This is most easily seen

48



in momentum space where one δ-function from the bulk vertices conserves over-

all external momentum in the extra dimension and hence does not affect the loop

momentum. In mixed position/momentum space this is manifested as one dz in-

tegral bringing down an inverse power of only external momenta without any de-

pendence on the loop momentum. We review this in Appendix A.4, where we dis-

cuss the passage between position and momentum space. The overall z-momentum

conserving δ-function thus adds one unit to the superficial degree of divergence to

account for the previous overcounting of dz ∼ 1/k suppressions.

5. Derivative coupling. The photon couples to charged bosons through a derivative

coupling which is proportional to the momentum flowing through the vertex. This

gives a contribution that is linear in the loop momentum, kµ.

6. Chirality: mass insertion, equation of motion. To obtain the correct chiral struc-

ture for a dipole operator, each diagram must either have an explicit fermion mass

insertion or must make use of the external fermion equation of motion (EOM). For

a bulk Higgs field, each fermion mass insertion carries a dz integral which goes like

1/k. As described in Section 2.5, the use of the EOM corresponds to an explicit ex-

ternal mass insertion. Thus fermion chirality reduces the degree of divergence by

one unit.

We may now straightforwardly count the powers of the loop momentum to deter-

mine the superficial degree of divergence for the case where the photon is emitted from a

fermion (one boson and two fermions in the loop) or a boson (two bosons and one fermion

in the loop). The latter case differs from the former in the number of boson propagators

and the factor of kµ in the photon Feynman rule.
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Neutral Charged

Boson Boson

Loop integral (d4k) +4 +4

Gauge invariance (p+ p′) −1 −1

Bulk fermion propagators 0 0

Bulk boson propagator −1 −2

Bulk vertices (dz) −3 −3

Overall z-momentum +1 +1

Derivative coupling 0 +1

Mass insertion/EOM −1 −1

Total degree of divergence −1 −1

The WH± diagram in Fig. 2.4 is a special case since it has neither a derivative coupling

nor an additional chirality flip, but these combine to make no net change to the superficial

degree of divergence. We confirm our counting in Section 2.6.1 that the superficial degree

of divergence for universal extra dimension where all fields propagate in the bulk is −1

so that the flavor-changing penguin is manifestly finite.

Before moving on to the case of a brane-localized boson, let us remark that this bulk

counting may straightforwardly be generalized to the case of a bulk boson with brane-

localized mass insertions. To do this, we note that the brane-localized mass insertion

breaks momentum conservation in the z direction and this no longer contributes +1 to

the degree of divergence. On the other hand, each mass insertion no longer contributes

−1 from the dz integral so that the changes in the “overall z-momentum” and “mass
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insertion/EOM” counting cancel out. We find that diagrams with a bulk gauge boson

and brane-localized mass insertions have the same superficial degree of divergence as

the lowest order diagrams in a bulk mass insertion expansion.

2.6.3 Bulk fields in the KK formalism

All of the power counting from the 5D position/momentum space formalism carries over

directly to the KK formalism with powers of mKK treated as powers of k. The posi-

tion/momentum space propagators already carry the information about the entire KK

tower as well as the profiles of each KK mode. Explicitly converting from a 5D propaga-

tor to a KK reduction,

∆5D(k, z, z′) =
∑
n

f (n)(z)∆
(n)
KK(k)f (n)(z′), (2.6.53)

where f (n) is the profile of the nth KK mode. The sum over KK modes is already accounted

for in the 5D propagator; for example, for a boson ∆
(n)
KK ∼ 1/k2 while ∆5D ∼ 1/k. The ver-

tices between KK modes are given by the dz integral over each profile, which reproduces

the same counting since each profile depends on z as a function of m(n)
KKz. Conservation

of z-momentum is replaced by conservation of KK number in the UV limit of large KK

number.

Indeed, it is almost tautological that the KK and position/momentum space for-

malisms should match for bulk fields since the process of KK reducing a 5D theory im-

plicitly passes through the position/momentum space construction. This will become

slightly more nontrivial in the case of brane-localized fields. We shall postpone a discus-

sion of mixing between KK states until Section 2.6.5.
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2.6.4 Brane fields in the 5D formalism

The power counting above appears to fail for loops containing a brane-localized Higgs

field. The brane-localized Higgs propagator goes like 1/k2 rather than 1/k for the bulk

propagator, but this comes at the cost of two vertices that must also be brane-localized,

thus negating the suppression from the dz integrals. The charged Higgs has two brane-

localized Higgs propagators, but loses a third dz integral from the brane-localized pho-

ton emission. Finally, there are no additional contributions from the brane-localized

fermion mass insertions nor are there any corrections from the conservation of over-

all z-momentum since it is manifestly violated by the brane-localized vertices (see Ap-

pendix A.4 for a detailed discussion). In the absence of any additional brane effects, both

types of loops would be logarithmically divergent, as discussed in [20].

Fortunately, two such brane effects appear. First consider the two neutral Higgs di-

agrams in Fig. 2.2. The diagram with no mass insertion requires the use of an external

fermion equation of motion which still reduces the superficial degree of divergence by

one so that it is finite. The diagram with a single mass insertion is finite in the Standard

Model due to a cancellation between the Higgs and neutral Goldstone diagrams, as dis-

cussed in Section 2.5. More generally, even for a single type of brane-localized field, there

is a cancellation between diagrams in Fig. 2.7 where the photon is emitted before and af-

ter the mass insertion. This can be seen by writing down the Dirac structure coming from

the fermion propagators to leading order in the loop momentum,

Ma ∼ /kγµ/k/k − kγµk/k = k2 (/kγµ − γµ/k) (2.6.54)

Mb ∼ /k/kγµ/k − /kkγµk = k2 (γµ/k − /kγµ) (2.6.55)

The terms with three factors of /k are contributions where “correct-chirality” fermions

propagate into the bulk, while the terms with only one /k are contributions where “wrong-
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Figure 2.7: One-mass-insertion neutral scalar diagrams. The leading order k-dependence
of each diagram cancels when the two are summed together.

chirality” fermions propagate into the bulk. The structure of the latter terms comes from

the γ5∂z term in the Dirac operator. The structures above multiply scalar functions which,

to leading order in k, are identical for each term. From the Clifford algebra it is clear that

(2.6.54) and (2.6.55) cancel so that the contribution that is nonvanishing in the UV must

be next-to-leading order in the loop momentum. In Appendix A.7 this cancellation is

connected to the chiral boundary conditions on the brane and is demonstrated with ex-

plicit flat-space fermion propagators. We thus find that the brane-localized neutral Higgs

diagrams have an additional −1 contribution to the superficial degree of divergence.

Next we consider the charged Goldstone diagrams. These diagrams have an addi-

tional momentum suppression coming from a positive power of the charged Goldstone

mass M2
W appearing in the numerator due to a cancellation within each diagram. In fact,

we have already seen in Section 2.5.1 how such a cancellation appears. For the single-

mass-insertion charged Goldstone diagram in Fig. 2.3, we saw in (A.2.6) that the form

of the 4D scalar propagators and the photon-scalar vertex cancels the leading-order loop

momentum term multiplying the required (p + p′)µ. The cancellation introduces an ad-

ditional factor of M2
W/(k

2 −M2
W ) so that the superficial degree of divergence is reduced

by two. Note that the position/momentum space propagators for a bulk Higgs have a
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different form than that of the 4D brane-localized Higgs and do not display the same can-

cellation. In the KK picture this is the observation that the cancellation in (A.2.6) takes

the form M2
KK/(k

2 −M2
KK), which does not provide any suppression for heavy KK Higgs

modes.

Finally, the diagrams where the photon emission vertex mixes the W and brane-

localized charged Goldstone are special cases. The photon vertex carries neither a dz

integral nor a kµ Feynman rule and hence makes no net contribution to the degree of di-

vergence. A straightforward counting including the brane-localized Goldstone, bulk W ,

and the single bulk vertex thus gives a degree of divergence of −1.

We summarize the power counting for a brane-localized Higgs as follows:

Neutral Charged W–H±

boson boson mixing

Loop integral (d4k) +4 +4 +4

Gauge invariance (p+ p′) −1 −1 −1

Brane boson propagators −2 −4 −2

Bulk boson propagator 0 0 −1

Bulk vertices (dz) −1 0 −1

Photon Feynman rule 0 +1 0

Brane chiral cancellation −1 0 0

Brane M2
W cancellation 0 −2 0

Total degree of divergence −1 −2 −1

54



It may seem odd that the brane-localized charged Higgs loop has a different superfi-

cial degree of divergence than the other 5D cases, which heretofore have all been −1.

This, however, should not be surprising since the case of a brane-localized Higgs is man-

ifestly different from the universal extra dimension scenario. It is useful to think of the

brane-localized Higgs as a limiting form of a KK reduction where the zero mode profile

is sharply peaked on the IR brane. The difference between the bulk and brane-localized

scenarios corresponds to whether or not one includes the rest of the KK tower.

2.6.5 Brane fields in the KK formalism

Let us now see how the above power counting for the brane-localized Higgs manifests it-

self in the Kaluza-Klein picture [20]. Observe that this power counting for both theW–H±

and the charged boson loops are trivially identical to the 5D case due to the arguments

in Section 2.6.3. For example, the M2
W cancellation is independent of how one treats the

bulk fields. The neutral Higgs loop, however, is somewhat subtle since the “chiral cancel-

lation” is not immediately obvious in the KK picture.

We work in the mass basis where the fermion line only carries a single KK sum (not

independent sums for each mass insertion) and the zero mode photon coupling preserves

KK number due to the flat A(0) profile. In this basis the internal fermion line carries one

KK sum and it is sufficient to show that for a single arbitrarily large KK mode the process

scales like 1/M2
KK. The four-dimensional power counting in Section 2.6.1 appears to give

precisely this, except that Lorentz invariance no longer removes a degree of divergence.

This is because this suppression came from the replacement of a loop momentum /k by

the fermion mass m. For an arbitrarily large KK mode, the fermion mass itself is the

loop momentum scale and so does not reduce the degree of divergence. In the absence of
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any additional suppression coming from the mixing of KK modes, it would appear that

the KK power counting only goes like 1/MKK so that the sum over KK modes should be

logarithmically divergent, in contradiction with the power counting for the same process

in the 5D formalism.

We shall now show that the pair of Yukawa couplings for the neutral Higgs also car-

ries the expected 1/k factor that renders these diagrams finite and allows the superficial

degrees of divergence to match between the KK and 5D counting. It is instructive to begin

by defining a basis for the zero and first KK modes in the weak (chiral) basis. We denote

left (right) chiral fields of KK number a by χ
(a)
L,R (ψ

(a)
L,R) where the L,R refers to SU(2)L

doublets and singlets respectively. We can arrange these into vectors

χ =
(
χ

(0)
Li
, χ

(1)
Ri
, χ

(1)
Li

)
ψ =

(
ψ

(0)
Ri
, ψ

(1)
Ri
, ψ

(1)
Li

)
, (2.6.56)

where i runs over flavors. It is helpful to introduce a single index J = 3a + i where

i = 1, 2, 3 according to flavor and a = 0, 1, 2 according to KK mode (writing a = 2 to mean

the first KK mode with opposite chirality as the zero mode). Thus the external muon and

electron are χ2 and ψ1 respectively, while an internal KK mode takes the form χJ or ψJ

with J > 3. This convention in (2.6.56) differs from that typically used in the literature

(e.g. [20]) in the order of the last two elements of ψ. This basis is useful because the KK

terms are already diagonal in the mass matrix (ψMχ+ h.c.),

M =


m11 0 m13

m21 MKK,1 m23

0 0 MKK,2

 (2.6.57)

where each element is a 3× 3 block in flavor space and we have written

m =
v√
2
f

(a)
Ri
Y∗f

(b)
Lj
�MKK, (2.6.58)
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χ̂2 ψ̂1

ψ̂J χ̂J

ŷ2J MJJ
ŷJ1

Figure 2.8: The fermion line in the mass basis for diagrams with an internal KK mode
(J > 3). For simplicity we do not show the internal photon insertion.

with indices as appropriate and MKK diagonal. Let us define ε = v/MKK to parameterize

the hierarchies in the mass matrix. For a bulk Higgs, these terms are replaced by overlap

integrals and the M32 block is nonzero, though this does not affect our argument. Note

that MKK,1 and MKK,2 are typically not degenerate due to O(m) differences in the doublet

and singlet bulk masses. In the gauge eigenbasis the Yukawa matrix is given by

y =

√
2

v
M

∣∣∣∣∣
MKK=0

∼


1 0 1

1 0 1

0 0 0

 , (2.6.59)

where we have assumed fL, fR, Y∗ ∼ O(1) for simplicity since the hierarchies in the f (0)s

do not affect our argument. The 1 elements thus refer to blocks of the same order of mag-

nitude that are not generically diagonal. The 0 blocks must vanish by gauge invariance

and chirality.

We now rotate the fields in (2.6.56) to diagonalize the mass matrix (2.6.57); we indicate

this by a caret, e.g. χ̂. In this basis the Yukawa matrix is also rotated y → ŷ. The fermion

line for this process is shown in Fig. 2.8; the Yukawa dependence of the amplitude is

M∼ ŷ1J ŷJ2. (2.6.60)

First let us note that in the unrealistic case where ŷ = y, one of the Yukawa factors in

(2.6.60) is identically zero for all internal KK modes, J > 3. One might then expect that

the mass rotation would induce a mixing of the zero modes with the KK modes that
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induces O(ε) blocks into the Yukawa matrix,

ŷ
?∼


1 ε 1

1 · · · · · ·

ε · · · · · ·

 . (2.6.61)

If this were the case then the product ŷ1J ŷJ2 would not vanish, but would be proportional

to ε ∼ 1/MKK, which is precisely the KK dependence that we wanted to show. While this

intuition is correct and captures the correct physics, the actual Yukawa matrix in the mass

basis has the structure (c.f. (67) in [20])

ŷ ∼


1 1 + ε −1 + ε

1 + ε · · · · · ·

1− ε · · · · · ·

 . (2.6.62)

The newO(1) elements come from the large rotations induced by the m21 and m13 blocks.

These factors cancel out so that we still have the desired ŷ1J ŷJ2 ∼ ε relation. Physically

this is because these O(1) factors come from the “large” rotation from chiral zero modes

to light Dirac SM fermions. Thus they represent the “wrong-chirality” coupling of the

external states induced by the usual mixing of Weyl states from a Dirac mass. This does

not include the mixing with the heavy KK modes, which indeed carries the above ε factors

so that the final result is

ŷ1J ŷJ2 ∼ ε ∼ 1

MKK

, (2.6.63)

giving the correct −1 contribution to the superficial degree of divergence for the neutral

Higgs diagrams to render them manifestly finite.

A few remarks are in order. First let us emphasize again that promoting the Higgs

to a bulk field makes the 3–2 block of the y matrix nonzero. This does not affect the
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above argument so that the KK decomposition confirms the observation that the ampli-

tude with a bulk Higgs is also finite [20]. Of course, for a bulk Higgs the power counting

in Section 2.6.2 gives a more direct check of finiteness. Next, note that without arguing the

nature of the zeros in the gauge basis Yukawa matrix or the physical nature of the εmixing

with KK modes, it may appear that the 1/MKK dependence of ŷ1J ŷJ2 requires a “miracu-

lous” fine tuning between the matrix elements of (2.6.62). Our discussion highlights the

physical nature of this cancellation as the mixing with heavy states that is unaffected by

the O(1) mixing of light chiral states.

Finally, let us point out that the above arguments are valid for the neutral Higgs di-

agram where y = yE , the charged lepton Yukawa matrix. The analogous charged Higgs

diagram contains neutrino Yukawa matrices yN so that there is no additional 1/k from

mixing.

2.6.6 Matching KK and loop cutoffs

There is one particularly delicate point in the single-mass-insertion neutral Higgs loop

in the KK reduction that is worth pointing out because it highlights the relation between

the KK scales M (n)
KK and the 5D loop momentum. To go from the 5D to the 4D formal-

ism we replace our position/momentum space propagators with a sum of Kaluza-Klein

propagators,

∆5D(k, z, z′) =
N∑
n=0

f (n)(z)
/k +Mn

k2 −M2
n

f (n)(z′). (2.6.64)

The full 5D propagator is exactly reproduced by summing the infinite tower of states,

N → ∞. More practically, the 5D propagator with characteristic momentum scale k is

well-approximated by at least summing up to modes with mass Mn ≈ k. Modes that are
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much heavier than this decouple and do not give an appreciable contribution. Thus, when

calculating low-energy, tree-level observables in 5D theories, it is sufficient to consider

only the effect of the first few KK modes. On the other hand, this means that one must

be careful in loop diagrams where internal lines probe the UV structure of the theory. In

particular, significant contributions from internal propagators near the threshold Mn ≈ k

would be missed if one sums only to a finite KK number while taking the loop integral

to infinity. This is again a concrete manifestation of the remarks below (2.6.52) that the

length scales probed by a process depend on the characteristic momentum scale of the

process.

Indeed, a Kaluza-Klein decomposition for a single neutral Higgs yields

|M|(p+p′)µ =
gv

16π2
fµf−eūe(p+ p′)µuµ ×

1

M2

[
c0 + c1

( v
M

)2

+O
( v
M

)3
]

(2.6.65)

for some characteristic KK scaleM ≈MKK and dimensionless coefficients ci that include a

loop integral and KK sums. In order to match the 5D calculation detailed above, we shall

work in the mass insertion approximation so that there are now two KK sums in each

coefficient. The leading c0 term is especially sensitive to the internal loop momentum

cutoff Λ relative to the internal KK masses,

c0 = −
N∑
n=1

N∑
m=1

λ2

2 (n2 + λ2) (m2 + λ2)
≡ − 1

λ2

N∑
n=1

N∑
m=1

ĉ0(n,m), (2.6.66)

where we have written mass scales in terms of dimensionless numbers with respect to the

mass of the first KK mode: Mn ∼ nMKK and Λ ∼ λMKK. It is instructive to consider the

limiting behavior of each term ĉ(n,m) for different ratios of the KK scale (assume n = m)

to the cutoff scale λ:

ĉ0(n, n) −→
(n
λ

)2

forn� λ (2.6.67)

ĉ0(n, n) −→
(n
λ

)0

forn ≈ λ (2.6.68)

ĉ0(n, n) −→
(
λ

n

)4

forn� λ. (2.6.69)
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We see that the dominant contribution comes from modes whose KK scale is near the loop

momentum cutoff while the other modes are suppressed by powers of the ratio of scales.

In particular, if one calculates the loop for any internal mode of finite KK number while

taking the loop cutoff to infinity, then the c0 contribution vanishes because the n ≈ λ con-

tributions are dropped. From this one would incorrectly conclude that the leading order

term is c1 and that the amplitude is orders of magnitude smaller than our 5D calculation.

Thus one cannot consistently take the 4D momentum to infinity without simultaneously

taking the 5D momentum (i.e. KK number) to infinity. Or, in other words, one must al-

ways be careful to include the nonzero contribution from modes with n ≈ λ. One can

see from power counting on the right-hand side of (2.6.66) that so long as the highest KK

number N and the dimensionless loop cutoff λ are matched, c0 gives a nonzero contribu-

tion even in the λ→∞ limit.

This might seem to suggest UV sensitivity or a nondecoupling effect3. However, we

have already shown that µ → eγ is UV-finite in 5D. Indeed, our previous arguments

about UV finiteness tell us that the overall contribution to the amplitude from large loop

momenta (and hence high KK numbers) must become negligible; we see this explicitly in

the UV limit of (2.6.66). The key statement is that the KK scale and the UV cutoff of the

loop integral must be matched,N & λ. This can be understood as maintaining momentum-

space rotational invariance in the microscopic limit of the effective theory (much smaller

than the curvature scale). Further, the prescription that one must match our KK and loop

cutoffs N & λ is simply the statement that we must include all the available modes of

our effective theory. It does not mean that one must sum a large number of modes in an

effective KK theory. In particular, one is free to perform the loop integrals with a low

cutoff Λ ∼ MKK so that only a single KK mode runs in the loop. This result gives a

nonzero value for c0 which matches the order of magnitude of the full 5D calculation and
3Further discussion of these points can be found in the appendix of [97].
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hence confirms the decoupling of heavy modes.

2.6.7 Two-loop structure

As with any 5D effective theory, the RS framework is not UV complete. This nonrenor-

malizability means that it is possible for processes to be cutoff-sensitive. Since an effective

µ → eγ operator (in the sense of Appendix A.1) cannot be written at tree level, there can

be no tree-level counter term and so we expect the process to be finite at one-loop order, as

we have indeed confirmed above. In principle, however, higher loops need not be finite.

The one-loop analysis presented thus far assumes that we may work in a regime

where the relevant couplings are perturbative. In other words, we have assumed that

higher-loop diagrams are negligible due to an additional g2/16π2 suppression, where g

is a generic internal coupling. This naturally depends on the divergence structure of the

higher-loop diagrams. If such diagrams are power-law divergent then it is possible to

lose this window of perturbativity even for relatively low UV cutoff Λ ∼ MKK. We have

shown that even though naı̈ve dimensional analysis suggests that the µ → eγ amplitude

should be linearly divergent in 5D, the one-loop amplitudes are manifestly finite.

Here we argue that the two-loop diagrams should be no more than logarithmically

divergent for bulk bosons so that there is an appreciable region of parameter space where

the process is indeed perturbative and the one-loop analysis can be trusted. This case is

also addressed in [20]. The relevant topologies are shown in Fig. 2.9. In this case, the

power counting arguments that we have developed in this section carry over directly to

the two-loop diagrams:
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Figure 2.9: Yin-Yang and double rainbow topologies of two-loop diagrams. The dotted
line represents either a gauge or Higgs boson. We have omitted the photon emission and
an odd number of mass insertions.

Loop integrals (d4k) +8

Gauge invariance (p+ p′) −1

Bulk boson propagators −2

Bulk vertices (dz) −5

Total degree of divergence 0

We find that the superficial degree of divergence is zero so that the process is, at worst,

logarithmically divergent.

The power counting for the brane-localized fields is more subtle, as we saw above.

Naı̈ve power counting suggests that the two-loop, brane-localized diagrams are no more

than quadratically divergent. However, just as additional cancellations manifested them-

selves in the one-loop, brane-localized case, it may not be unreasonable to expect that

those cancellations might carry over to the two-loop diagrams. Checking the existence of

such cancellations requires much more work we leave this to a full two-loop calculation.
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2.7 Outlook and Conclusion

We have presented a detailed calculation of the µ→ eγ amplitude in a warped RS model

using the mixed position/momentum representation of 5D propagators and the mass in-

sertion approximation, where we have assumed that the localized Higgs VEV is much

smaller than the KK masses in the theory. Our calculation reveals potential sensitivity

to the specific flavor structure of the anarchic Yukawa matrices since this affects the rela-

tive signs of coefficients that may interfere constructively or destructively. We thus find

that while generic flavor bounds can be placed on the lepton sector of RS models, one

can systematically adjust the structure of the YE and YN matrices to alleviate the bounds

while simultaneously maintaining anarchy. In other words, there are regions of parameter

space which can improve agreement with experimental constraints without fine tuning.

Conversely, one may generate anarchic flavor structures which—for a given KK scale—

cannot satisfy the µ → eγ constraints for any value of the anarchic scale Y∗. Over a range

of randomly generated anarchic matrices, the parameter controlling this Y∗-independent

structure has a mean value of zero and a 1σ value which can push the KK scale to 4 TeV.

It is interesting to consider the case where MKK = 3 TeV where KK excitations are

accessible to the LHC. When the b coefficient takes its statistical mean value, b = 0, the

minimal model suffers a O(10) tension between the tree-level lower bound on Y∗ and the

loop-level upper bound,

Y∗ > 4 Y∗ < 0.5. (2.7.70)

This tension is slightly alleviated in the custodial model,

Y∗ > 1.25 Y∗ < 0.3. (2.7.71)

Thus for MKK = 3 TeV one must one must accept some mild tuning in the relative sizes
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of the 5D Yukawa matrix. Fig. 2.5.4 summarizes the bounds including the effect of the b

coefficient.

On the other hand, we know that anarchic models generically lead to small mixing

angles (see however [25]). These fit the observed quark mixing angles well but are in

stark contrast with the lepton sector where neutrino mixing angles are large, O(1), and

point to additional flavor structure in the lepton sector. For example in [148] a bulk A4

non-Abelian discrete symmetry is imposed on the lepton sector. This leads to a success-

ful explanation of both the lepton mass hierarchy and the neutrino mixing angles (see

also [172]) while all tree-level lepton number-violating couplings are absent, so the only

bound comes from the µ→ eγ amplitude.

We have also provided different arguments for the one-loop finiteness of this ampli-

tude which we verified explicitly through calculations. We have illuminated how to cor-

rectly perform the power counting to determine the degree of divergence from both the

5D and 4D formalisms. The transition between these two pictures is instructive and we

have demonstrated the importance of matching the number of KK modes in a 4D EFT

to any 4D momentum cutoff in loop diagrams. The power-counting analysis can be par-

ticularly subtle for the case of brane-localized fields and we have shown how one-loop

finiteness can be made manifest. Finally, we have addressed the existence of a pertur-

bative regime in which these one-loop results give the leading result by arguing that the

bulk field two-loop diagrams should be at most logarithmically divergent and that it is at

least feasible that the brane-localized two-loop diagrams may follow this power counting.

In addition to µ→ eγ, there is an analogous flavor-changing dipole-mediated process

in the quark sector, b→ sγ with additional gluon diagrams with the same topology as the

Z diagrams described here. Because of operator mixing, connecting the b→ sγ amplitude
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to QCD observables requires the Wilson coefficients for both the photon penguin C7γ and

the gluon penguin C8g. A discussion can be found in [28], though there it was expected

that these penguins would be logarithmically divergent. Further, it would be interesting

to note whether the experimental bounds on this process admits the small-Y∗ region of

parameter space where the b term may be of the same order as the a term. We leave the

explicit evaluation of the b→ sγ amplitude in warped space to future work [97].
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CHAPTER 3

B → Sγ PENGUIN IN RS MODEL

Based on the 2012 article “Warped Penguins”, written in collaboration with Monika

Blanke, Bibhushan Shakya and Philip Tanedo arXiv:1203.6650.
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3.1 Introduction

The Randall-Sundrum (RS) scenario of a warped extra dimension provides an elegant

solution to the hierarchy problem [330, 323, 222, 165, 237, 126] and a way to understand

strongly coupled dynamics through the AdS/CFT correspondence [293, 51, 331]. For re-

views see [147, 157, 220, 346]. One of the promising phenomenological features to come

out of this framework is an explanation of the Standard Model (SM) flavor structure

through the split-fermion scenario [222, 237, 53, 238]. In these models the Yukawa ma-

trices are anarchic and the spectrum of fermion masses is generated by the exponential

suppression of zero mode wavefunctions with a brane-localized Higgs [28]. This also au-

tomatically generates hierarchical mixing angles [28, 251, 270] and suppresses many tree-

level flavor-changing neutral currents (FCNCs) through the RS-GIM mechanism [28]. In

order to protect against large contributions to the T parameter coming from bulk gauge

fields, one may introduce a gauged custodial symmetry [24] that is broken on the bound-

aries; a straightforward discrete extension of such a symmetry also protects against cor-

rections to the Zbb̄ vertex [22, 142] and flavor changing couplings of the Z boson to left-

handed down-type quarks [95, 31].

These flavor protection mechanisms are not always sufficient to completely protect RS

models from stringent experimental flavor constraints. In the quark sector, the tree-level

exchange of Kaluza-Klein (KK) gluons and neutral electroweak gauge bosons contributes

to meson-antimeson mixing and induces left-right operators. These operators are not

present in the SM and receive a significant enhancement through QCD effects due to

their large anomalous dimension. In the kaon system they are also chirally enhanced

by a factor of m2
K/m

2
s. These contributions lead to new CP violating effects in the kaon

system, namely the well-measured observable εK , and result in generic bounds ofO(10−
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20 TeV) for the KK gluon mass [31, 151, 94, 113, 189, 73, 125]. To reduce this bound,

one must introduce additional structure such as horizontal symmetries [335, 153], flavor

alignment [204, 159], or an extended strong sector [74]. Alternately, one may promote the

Higgs to a bulk field [19] to localize the fermion zero modes closer to the UV brane.

Additional constraints on the RS flavor sector come from loop-induced dipole opera-

tors through penguin diagrams. The first estimates for these operators were performed

in [28, 251, 27, 20] assuming UV sensitivity at all loops within the 5D effective theory

and a calculation within the two-site approach was performed in [19]. In [28] the bound

MKK > O(10 TeV) was derived from the constraint on the neutron electric dipole mo-

ment. The RS dipole contributions lead to dangerously large effects in direct CP violation

in the K → ππ decays measured by the ratio ε′/ε [214]. Combining the bound from the

latter ratio with the εK constraint leads to a lower bound on the KK scale independent

of the strength of the 5D Yukawa. More recently it was shown that even for the brane

Higgs scenario the one-loop induced magnetic penguin diagrams are finite in RS and can

be calculated effectively in a manifestly 5D formalism [156]. The lepton flavor violating

penguin µ→ eγ sets bounds on the KK and anarchic Yukawa scales that are complemen-

tary to tree-level processes, so the tension between these bounds quantifies the degree of

tuning required in the 5D Yukawa matrix [20].

In this paper we examine the calculation and phenomenological observables of the

quark sector processes b → qγ (q = s, d) in the RS framework with a brane-localized

Higgs field using the mixed position–momentum space formalism. These processes dif-

fer from their leptonic analogs for various reasons beyond the spectrum and diagrams

involved. Firstly, while the branching ratio of µ → eγ is only bounded from above, the

branching ratios for B → Xsγ and, to a lesser extent, B → Xdγ are well-measured and

in good agreement with the SM. Secondly, theoretical predictions are more involved due
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to the renormalization group (RG) evolution from the KK scale to the B meson scale and

hadronic effects at the latter scale. The RG running over this large range of energy scales

introduces a sizable mixing between the various effective operators, so that one must also

include the effects of the magnetic gluon penguin C(′)
8 in addition to the magnetic photon

penguin C(′)
7 .

After reviewing the flavor structure of RS models in Section 3.2, we calculate the C(′)
7

and C
(′)
8 Wilson coefficients of the quark dipole operators in Section 3.3. We provide ex-

plicit formulae for the dominant RS contributions to the Wilson coefficients at the KK

scale in both the minimal and custodial models and analyze the size of these contribu-

tions. In Sections 3.4 and 3.5, we subsequently perform the RG evolution down to the B

meson scale and obtain predictions for the branching ratios Br(B → Xs,dγ).

Finally, in Section 3.6, we investigate the phenomenological implications on a number

of benchmark observables related to the photon and gluon penguin operators. We first

show that these operators give non-negligible constraints for both minimal and custodial

models. We then restrict our attention to realistic models with a bulk custodial symmetry

SU(2)L × SU(2)R × U(1)X × PLR and consider the effect of benchmark observables on

points in parameter space that pass tree-level constraints as evaluated in [94]. Rather than

performing a detailed analysis of all observables provided by the B → Xsγ, B → K∗γ,

B → Xsµ
+µ− and B → K∗µ+µ− decay modes, we focus on a number of benchmark

observables in order to illustrate the pattern of effects and leave a more detailed analysis

for future work. Specifically we study:

• The branching ratio Br(B → Xsγ) and the CP averaged branching ratio 〈Br(B →

Xdγ)〉which we impose as constraints on our parameter scan.

• The branching ratio Br(B → Xsµ
+µ−) and the forward backward asymmetry AFB in
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B → K∗µ+µ−. Stringent data that are in good agreement with the SM exist for both

observables, placing strong bounds on various new physics (NP) scenarios. The cus-

todial RS model naturally predicts small effects in these observables since they are

rather insensitive to NP contributions to the primed magnetic Wilson coefficients.

• The time-dependent CP asymmetry SK∗γ in B → K∗γ and the transverse asymme-

try A
(2)
T in B → K∗µ+µ−, evaluated in the region of low dimuon invariant mass

1 GeV2 < q2 < 6 GeV2.

Since the RS contributions generally exhibit the hierarchy ∆C ′7 � ∆C7 [28, 27] the

latter observables are particularly suited to look for RS contributions. CP asymmetries in

radiativeB decays were already suggested in [28, 27] as good probes to look for RS effects.

We quantify the possible size of effects and study the possible RS contributions to the

various observables in a correlated manner. We also included the transverse asymmetry

A
(2)
T , which has not been considered in the context of RS models before.

3.2 Flavor in Randall-Sundrum models

We summarize here the relevant aspects of flavor physics and the RS scenario. For a

review of the general framework see e.g. [157, 220, 346, 73, 31]. We consider a 5D warped

interval z ∈ [R,R′] with an infrared (IR) brane at z = R′ ∼ (TeV)−1 and an ultraviolet

(UV) brane at z = R ∼ MPl, the AdS curvature scale. In conformal coordinates the metric

is

ds2 =

(
R

z

)2

(dxµdxνη
µν − dz2). (3.2.1)

One may recover the classic RS conventions with the identifications z = R exp(ky) and

k = 1/R, k exp (−kL) = 1/R′. Fermions are Dirac fields that propagate in the bulk and
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can be written in terms of left- and right-handed Weyl spinors χ and ψ̄ via

Ψ(x, z) =

χ(x, z)

ψ̄(x, z)

 . (3.2.2)

In order to obtain a spectrum with chiral zero modes, fermions must have chiral (orbifold)

boundary conditions,

ψL(xµ, R) = ψL(xµ, R′) = 0 and χR(xµ, R) = χR(xµ, R′) = 0, (3.2.3)

where the subscripts L and R denote the SU(2)L doublet (L) and singlet (R) representa-

tions, i.e. the chirality of the zero mode (SM fermion). The localization of the normalized

zero mode profile is controlled by the dimensionless parameter c,

χ(0)
c (x, z) =

1√
R′

( z
R

)2 ( z
R′

)−c
fc χ

(0)
c (x) and ψ(0)

c (x, z) = χ
(0)
−c(x, z), (3.2.4)

where c/R is the fermion bulk mass. Here we have defined the RS flavor function charac-

terizing the fermion profile on the IR brane,

fc =

√
1− 2c

1− (R/R′)1−2c
. (3.2.5)

We assume that the Higgs is localized on the IR brane. The Yukawa coupling is

SYuk =

∫
d4x

(
R

R′

)4 [
− 1√

2

(
Q̄i · H̃ R Yu,ijUj + Q̄i ·H RYd,ijDj + h.c.

)]
(3.2.6)

where Yij are dimensionless 3×3 matrices such that (Y5)ij = RYij is the dimensionful

parameter appearing in the 5D Lagrangian with Y assumed to be a random ‘anarchic’

matrix with average elements of order Y∗. After including warp factors and canonically

normalizing fields, the effective 4D Yukawa and zero mode mass matrices are

ySM
ij = fcLiYijf−cRj mij =

v√
2
ySM
ij , (3.2.7)
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so that the fermion mass hierarchy is set by the f1 � f2 � f3 structure for both left- and

right-handed zero modes. At the same time, the hierarchical pattern of the CKM matrix

is also generated naturally. In other words, the choice of c for each fermion family intro-

duces additional flavor structure into the theory that generates the zero mode spectrum

while allowing the fundamental Yukawa parameters to be anarchic.

In this document we work in the gauge basis where the bulk mass matrices and the

interactions of the neutral gauge bosons are flavor diagonal but not flavor universal. The

Yukawa couplings are non-diagonal in this basis and cause the resulting fermion mass

matrices to be non-diagonal. Since these off-diagonal entries are governed by the small

parameter vR′, we will treat them as a perturbative correction in the mass insertion ap-

proximation.

Realistic RS models typically require a mechanism to suppress generically large con-

tributions to the Peskin-Takeuchi T parameter and the Zbb̄ coupling; a common technique

is to extend the bulk gauge symmetry to [24, 155, 23, 22, 142, 122, 118]

SU(3)c × SU(2)L × SU(2)R × U(1)X × PLR. (3.2.8)

Here PLR is a discrete symmetry exchanging the SU(2)L and SU(2)R factors; in order to

protect the left-handed Zbb̄ coupling from anomalously large corrections, the left-handed

down type quarks have to be eigenstates under PLR. This in turn requires enlarged

fermion representations with respect to the minimal model. As we will see later, while the

additional gauge bosons present in the custodial model do not have a significant impact

on the b→ qγ and b→ qg (q = d, s) amplitudes, the additional fermion modes contribute

and generally enhance the effect.
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3.3 Calculation of the b→ qγ Penguin in RS

We now calculate the RS contributions to the b → qγ and b → qg (q = d, s) decays. These

contributions are calculated at the KK scale MKK ∼ 1/R′; in subsequent sections we will

relate these to renormalization group (RG) evolved coefficients and observables at the

low scale ∼ mb.

We only evaluate the dominant diagrams, working in Feynman gauge and the mass

insertion approximation, where the expansion parameter is vR′/
√

2 ∼ O(0.1). We have

checked explicitly that the diagrams presented here dominate those that were neglected

by at least an order of magnitude; a more detailed calculation is beyond the scope of this

work and, in our opinion, premature before the discovery of RS KK modes. We refer

to [156] for details of the 5D calculation, Feynman rules, and guidelines for estimating

the dominant diagrams. For additional notation and conventions, especially with respect

to the custodially protected model, see [31]. See Appendix B.3 for comments on theory

uncertainties.

3.3.1 Effective Hamiltonian for b→ qγ transitions

The b → qγ (q = d, s) transitions are most conveniently described by an effective Hamil-

tonian in the operator product expansion, see e. g. [111] for a review. The dipole terms

most sensitive to new physics are

Heff = −GF√
2
V ∗tqVtb

[
C7(µ)Q7(µ) + C ′7(µ)Q′7(µ) + C8(µ)Q8(µ) + C ′8(µ)Q′8(µ)

]
+ h.c., (3.3.9)
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where we neglect terms proportional to V ∗uqVub. The effective operators are

Q7 =
e

4π2
mb(q̄σµνPRb)F

µν Q′7 =
e

4π2
mb(q̄σµνPLb)F

µν (3.3.10)

Q8 =
gs

4π2
mb(q̄σµνT

aPRb)G
µν,a Q′8 =

gs
4π2

mb(q̄σµνT
aPLb)G

µν,a, (3.3.11)

where PL,R = (1∓γ5)/2. In this document we will focus on new contributions from the RS

model to these operators. There are also contributions from non-dipole operators Q1,...,6

and their chirality-flipped (primed) counterparts, but these are far less sensitive to NP

and can be assumed to be equal to their SM contributions1.

At leading order in the SM, the primed Wilson coefficients C ′7,8 are suppressed by

ms/mb and therefore negligible, so the relevant Wilson coefficients at the scale MW are

CSM
7 (MW ) = −1

2
D′0(xt) , CSM

8 (MW ) = −1

2
E ′0(xt), (3.3.12)

where xt = m2
t/M

2
W , and D′0(xt) ≈ 0.37 and E ′0(xt) ≈ 0.19 are loop functions given ex-

plicitly in (3.15–3.16) of [112]. In what follows we refer to the RS contributions to these

operators as ∆C
(′)
7,8.

3.3.2 Structure of the amplitude

In order to calculate the b→ (s, d)γ and b→ (s, d)g penguins, we work in a manifestly 5D

framework. Unlike the 4D KK reduction, this procedure automatically incorporates the

entire KK tower2 at the cost of an expansion with respect to the Higgs-induced mass term

(∼ vR′).
1The impact of flavor changing neutral gauge bosons on the operators Q1,...,6 has recently been stud-

ied in [115]. Since the relevant contributions in RS are suppressed both by the KK scale and the RS GIM
mechanism, the contributions are expected to be small and will be neglected in this paper.

2 An alternate method of including the entire KK tower based on residue theorems was presented in
[201], though it obfuscates the physical intuition presented below.
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Using the on-shell condition for the photon, the general form of the left-to-right chi-

rality fLi (p)→ fRj (p′)γ amplitude, C7, in a 5D theory can be written as [156, 287]

MLi→Rj =
ie

16π2

vR′2√
2

∑
k,`

(
ak`Y

†
ikYk`Y

†
`j + bijY

†
ij

)
fQifDj ū

R
p′ [(p+ p′)µ − (mb +mq)γ

µ]uLp εµ

(3.3.13)

where ε is the photon polarization. The chirality flipped amplitude is given by the conju-

gate of this result, MRi→Lj = (MLj→Ri)
†. The expression for the gluon penguin is anal-

ogous with the appropriate substitutions. Using the fermion equations of motion, the

term in the square brackets gives the required dipole structure σµνFµν , so a simple way to

identify the gauge-invariant contribution to the amplitude is to determine the coefficient

of the (p + p′)µ term [287]. In [156] this observation was used to show the manifest one-

loop finiteness of these dipole transitions in 5D theories. Matching (3.3.13) to the effective

Hamiltonian (3.3.9) yields expressions for the RS contributions to the Wilson coefficients,

∆C.

We refer to the coefficients ak` and bij in (3.3.13) as the anarchic and the misalignment

contributions, respectively. They are products of couplings and dimensionless integrals

whose flavor indices reflect the bulk mass dependence of internal propagators. Upon

diagonalizing the SM fermion mass matrix,the anarchic term a is not diagonalized and

generally remains anarchic. On the other hand, in the limit where the bulk masses are

degenerate, the flavor structure of the b term is aligned with the SM Yukawa matrices and

thus contains no flavor-changing transitions in the mass basis [28, 19, 20]. This alignment

is pronounced for the first and second generation fermions because their bulk masses are

nearly degenerate, but special care is required for the third generation quarks since these

are localized towards the IR brane. The physical contribution of the b coefficient comes

from the robustness of off-diagonal elements of bijYijfQifDj after passing to the basis in

which YijfQifDj is diagonalized. Contrary to the usual assumption of Yukawa anarchy,
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the overall size of the b term depends on the misalignment of the specific anarchic Yukawa

matrix relative to the set of bulk masses as flavor spurions. One measure of this effect is

the 1σ standard deviation from b = 0 in a scan over random anarchic matrices [156]; we

use this to identify the dominant contributions to this misalignment term.

By assumption, the anarchic contribution is independent of the SM flavor sector, so

there is no analogous alignment suppression to the a coefficient. However, depending

on the internal modes in the loop, each diagram contributing to this term carries one of

two possible independent flavor spurions that can be built out of the Yukawa matrices

that may enter this product: Y †uYuY
†
d and Y †d YdY

†
d . These matrices may have arbitrary

relative phase, so the two terms may add either constructively or destructively. The mis-

alignment contribution is a third independent flavor spurion, which also arries a relative

phase dependent on the particular choice of parameters.

We express the anarchic (a) and misalignment (b) coefficients in terms of dimensionless

integrals, which are defined in Appendix B.1. The C8 diagrams where a gluon is emitted

from an internal gluon have integral results that are typically O(1) while the integrals for

the other diagrams are typically O(10−1) in magnitude. Note that the contribution to a

from each diagram matches what is expected from a naive dimensional analysis. This is in

contrast to the analogous calculation for µ→ eγ, where the leading diagrams are smaller

than the naive estimated size. There are thus no problems with the two-loop contribution

yielding a larger contribution than expected from the perturbative expansion.

Below we present the calculation for the right-to-left chirality (unprimed) Wilson co-

efficients ∆C7,8 for b → q; the left-to-right chirality (primed) Wilson coefficients are ob-

tained by Hermitian conjugation of the q → b amplitude. The anarchic contribution to

the left-to-right chirality coefficients are enhanced over the right-to-left coefficients by a
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factor of fbL/fbR , while the misalignment contribution is of the same order of magnitude.

This behavior is explained qualitatively in Appendix B.2 and demonstrated numerically

in Section 3.6.

3.3.3 Calculation of ∆C
(′)
7

Fig. 3.1 shows the dominant contributions to the C7 photon penguin operator. The RS

contribution to the b→ qγ Wilson coefficient is

∆C7 =
−vR′2

8mbGF

(V ∗tqVtb)
−1
∑
ijk`

(UDL
qi )†fQdi fDj

[∑
k,`

ak`Y
u†
ik Y

u
k`Y

d†
`j + bijY

d†
ij

]
UDR
jb . (3.3.14)

UDL,R are the rotation matrices between the 5D gauge and the light down quark mass

bases.

Note that throughout our analysis we use the tree level matching condition for the 5D

gauge couplings and neglect possible brane kinetic terms that may alter this matching.

While this affects the misalignment contribution to C
(′)
7 and the calculation for C(′)

8 , the

anarchic contribution to C(′)
7 , containing only one gauge coupling vertex instead of three,

remains relatively unaffected. Since the latter gives the dominant contribution to the ob-

servables discussed in section 3.6, we do not expect this assumption to have a significant

impact on our predictions.

∆C7: anarchic contribution

The dominant anarchic contribution is the diagram with one mass insertion and a charged

Higgs (Goldstone) in the loop, Fig. 3.1a. Note that this diagram is not present in the
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H−

D Q

Q U

U

Y †d

Yu

Y †u

(a) Charged Goldstone loop

G

Q

Q

D

D Q

Y †d

G

Q

Q

D Q

Y †d

(b) Gluon (Gµ or G5) loops with a single mass insertion

Figure 3.1: Leading contributions to the anarchic (a) and misalignment (b) terms of the
C7 Wilson coefficient. Arrows indicate SU(2)L representation; this is equivalent to label-
ing the chirality of the zero mode for SM fields. Here Q, U and D denote the 5D chiral
fermion fields containing the SM left-handed doublets and right-handed up and down
singlets, respectively. H− is the charged component of the Higgs doublet that serves as
the Goldstone boson of W− after electroweak symmetry breaking, and G is the 5D gluon
field. Additional diagrams related by exchanging the order of the mass insertion and
photon emission are left implicit.

analogous leptonic penguin, which has a neutrino in the loop. The next-to-leading dia-

grams contributing to this coefficient are gluon loops with three mass insertions. These

diagrams carry an independent flavor structure (Y †d YdY
†
d ) and can interfere either con-

structively or destructively with Fig. 3.1a. However, they are only 5% corrections because

they have a different topology, carry two more mass insertions, and are proportional to

Qd = −1/3; these factors more than compensate for the gauge coupling enhancement of

g2
s lnR′/R ≈ 36. The value for the a coefficient in (3.3.14) coming from the penguin in
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Fig. 3.1a is a dimensionless integral whose explicit form is given in (B.1.11),

a = QuIC7a , (3.3.15)

where Qu = 2/3 is the charge of the internal up-type quark.

∆C7: misalignment contribution

The dominant misalignment contributions come from gluon diagrams with a single mass

insertion. As shown in Fig. 3.1b, this insertion can either be on an internal or external

fermion line. The final misalignment contribution in (3.3.14) is

b = Qd
4

3

(
g2
s ln

R′

R

)
IC7b

. (3.3.16)

Here Qd is the charge of the internal down-type quark, 4/3 is a color factor, lnR′/R is a

warp factor associated with bulk gauge couplings, and IC7b
is a dimensionless integral

defined in (B.1.12).

3.3.4 Calculation of ∆C
(′)
8

The gluon penguin operators C8 and C ′8 differ from their photon counterparts due to

additional QCD vertices available and the magnitude of the QCD coupling, g2
5D/R =

g2
s lnR′/R ≈ 36. Because of this, the dominant diagrams contributing to b → qg cannot

be obtained from b → qγ by simply replacing the photon with a gluon in the leading

diagrams for C(′)
7 . The general expression for ∆C8 is the same as that for ∆C7 in (3.3.14),

with coefficients a and b coming from the diagrams shown in Fig. 3.2.
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H−

D Q

Q U

U

Y †d

Yu

Y †u

Gµ

Q D

Y †d

Yd

Y †d

D Q

(a) Charged Goldstone and three mass insertion gluon loops. Not
shown: gluon loop with two and three internal line mass insertions.

Gµ

D Q

Yu

D Q

(b) One mass insertion gluon loop

Figure 3.2: Leading contributions to the a and b terms of the C8 Wilson coefficient follow-
ing the notation of Fig. 3.1. Gµ refers to only the gluon four-vector.

∆C8: anarchic contribution

There are two classes of dominant contributions to the anarchic (a) coefficient in C
(′)
8 . In

addition to the charged Higgs diagrams analogous to Fig. 3.1a, there are gluon diagrams

with three mass insertions on the fermion lines, which are now sizable due to the size of

the strong coupling constant and the three-point gauge boson vertex. Of the latter class,

one only needs to consider diagrams with at most one mass insertion on each external leg

since sequential insertions on an external leg are suppressed by factors of mqR
′. Note that

these two sets of diagrams contribute with different products of Yukawa matrices; while

the Higgs diagrams are proportional to Y †uYuY
†
d , the gluon diagrams are proportional to
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Y †d YdY
†
d . Thus these two terms may add either constructively or destructively and may

even add with different relative sizes if there is a hierarchy between the overall scale of

the up- and down-type 5D anarchic Yukawas. The a coefficient is

a = IC7a ⊕
3

2

(
g2
s ln

R′

R

)2(
R′v√

2

)2

IGC8a
, (3.3.17)

where we have written ⊕ to indicate that the two terms carry independent flavor spu-

rions. Here IC7a is the same dimensionless integral appearing in (3.3.15). The second

term includes color factors, warped bulk gauge couplings, and explicit mass insertions in

addition to the dimensionless integral IC8a defined in (B.1.15).

∆C8: misalignment contribution

The single mass insertion gluon emission diagram in Fig. 3.2b gives the dominant mis-

alignment term. Additional diagrams with the gluon emission from the quark line are

suppressed by a relative color factor of 1/6 versus 3/2 and can be neglected. The expres-

sion for this diagram is

b =
3

2

(
g2
s ln

R′

R

)
IC8b

. (3.3.18)

with IC8b
defined in (B.1.19). We have again pulled out an explicit color factor and the

warped bulk gauge coupling.

3.3.5 Modifications from custodial symmetry

In models with a gauged bulk custodial symmetry, the additional matter content may

also contribute to the b → qγ(g) transitions. Since custodial symmetry enlarges the elec-

troweak sector, the only way to connect these custodial modes to the external SM states
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that gives contributions comparable to those in Fig. 3.1 and Fig. 3.2 is through Higgs inter-

actions, as contributions from W and Z loops and their custodial siblings are suppressed

due to the relative size of the electroweak gauge couplings compared to the Yukawa and

strong couplings. The leading custodial contributions are shown in Fig. 3.3; these are

the same diagrams that contribute to the anarchic (a) terms of the C7 and C8 Wilson co-

efficients and now appear with additional custodial fermions, denoted by U ′,U ′′,and D′.

Observe that each of these custodial contributions is proportional to Y †d YdY
†
d . In partic-

H−

DR Qd
L

Qu
L U

′(′)
R

U
′(′)
R

Y †d

Yd

Y †d

H−

DR Qd
L

Qu
L U

′(′)
R

U
′(′)
R

Y †d

Yd

Y †d

Gµ

Q D′

Y †d

Yd

Y †d

D Q

Figure 3.3: Additional custodial diagrams contributing to the C7 and C8 coefficients.

ular, the custodial Higgs diagrams carry a flavor structure that is independent of that of

their minimal model counterparts.

By construction, boundary conditions for custodial fermions are chosen such that they

have no zero modes. In particular, the U ′, U ′′, and D′ have the same IR boundary con-

dition as their SM counterparts but the opposite UV boundary condition. Since the lo-
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calization of the Higgs pulls the loop towards the IR brane, the contribution of these

custodial fermions is well-approximated by the contributions of their SM counterparts.

In other words, the custodial fermions only have KK modes, but since the minimal model

diagrams are dominated by the KK fermion contribution, the custodial modes contribute

approximately equally to the process. From this point of view, it is also clear that custodial

diagrams do not make appreciable contributions to the b coefficient from misalignment

because they do not carry internal zero modes, which are sensitive to the bulk mass spec-

trum.

Note that the U ′ and U ′′ couplings to the charged Higgs come with a factor of 1/
√

2

while the D′ coupling to the Higgs does not [94]. Thus the additional custodial diagrams

contribute an analytic structure that is nearly identical to the minimal model diagrams

except for the Yukawa matrices, which now come with the product Y †d YdY
†
d . Since this is

independent of the Y †d YuY
†
u flavor spurion in the minimal model diagrams, the addition

of the custodial diagrams generically enhances the penguin amplitude by less than the

factor of two that one would obtain in the limit Yd = Yu. This shows that while custodial

symmetry can be used to suppress tree-level flavor changing effects in RS models, this

comes at the cost of generically enhancing loop-level flavor processes.

3.4 RadiativeB decays

We now examine the physical observables most directly related to the parton-level b →

q(γ, g) operators derived above: B meson decays with an on-shell photon.
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3.4.1 TheB → Xs,dγ decay

The SM predictions for the inclusive decays B → Xs,dγ are [305, 146]

Br(B → Xsγ)SM = (3.15± 0.23) · 10−4 , 〈Br(B → Xdγ)〉SM = (15.4+2.6
−3.1) · 10−6 . (3.4.19)

These can be compared to the measured values [55]

Br(B → Xsγ)exp = (3.55± 0.27) · 10−4 , 〈Br(B → Xdγ)〉exp = (14± 5) · 10−6 . (3.4.20)

Here 〈Br(B → Xdγ)〉 refers to the CP averaged branching ratio in which the hadronic

uncertainties cancel to a large extent [84]. We have extrapolated the experimental value

for 〈Br(B → Xdγ)〉 to the photon energy cut Eγ > 1.6 GeV used for the theory prediction.

Rather than performing an extensive error analysis, we simply require the new RS

contributions to fulfill the constraints

∆Br(B → Xsγ) = Br(B → Xsγ)exp − Br(B → Xsγ)SM = (0.4± 0.7) · 10−4 ,(3.4.21)

∆Br(B → Xdγ) = 〈Br(B → Xdγ)〉exp − 〈Br(B → Xdγ)〉SM = −(1± 11) · 10−6 .(3.4.22)

Neglecting all uncertainties associated with NP contributions, these constraints represent

the 2σ ranges when combining experimental and theoretical uncertainties in quadrature.

Although the data and prediction for B → Xdγ are currently less precise than those for

B → Xsγ, an important and partly complementary constraint can be obtained from the

former decay, as recently pointed out in [146]. Since the data for B → Xdγ lie slightly

below the SM prediction, ∆Br(B → Xdγ) < 0 is somewhat favored, leaving little room

for NP contributing to C ′7. In contrast, a positive NP contribution to Br(B → Xsγ) is

welcome to bring the theory prediction closer to the data. We note that if the tree level

values for the CKM parameters are used instead of the SM best fit values, the predicted

central value for 〈Br(B → Xdγ)〉SM rises to about 19 · 10−6, increasing the tension with the

data.
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3.4.2 Master formula for Br(B → Xsγ)

Following the strategy of [115, 114, 96], which use the results of [306], the “master for-

mula” for the inclusive B → Xsγ branching ratio in terms of the SM branching ratio,

BrSM, and NP contributions to the Wilson coefficients is

Br(B → Xsγ) = BrSM + 0.00247
[
|∆C7(µb)|2 + |∆C ′7(µb)|2 − 0.706 Re(∆C7(µb))

]
. (3.4.23)

The RS contributions to ∆C
(′)
7 (µb) are obtained from the RG evolution of ∆C

(′)
7 and ∆C

(′)
8 ,

calculated in Section 3.3 at the high scale MKK = 2.5 TeV, down to the B scale, µb =

2.5 GeV,

∆C
(′)
7 (µb) = 0.429 ∆C

(′)
7 (MKK) + 0.128 ∆C

(′)
8 (MKK) . (3.4.24)

All known SM non-perturbative contributions have been taken into account while the RS

contribution is included at leading order neglecting uncertainties. This approach is an

approximation to studying the effects of RS physics on the decay in question; however, in

view of the other uncertainties involved—such as the the mass insertion approximation

and taking into account only the leading diagrams—this approach gives sufficiently accu-

rate results to estimate the size of RS contributions. A more accurate and detailed analysis

is beyond the scope of our analysis and, in our view, premature before the discovery of

RS KK modes.
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3.4.3 Master formula for 〈Br(B → Xdγ)〉

A master formula can be obtained in a similar manner for the CP-averaged B → Xdγ

branching ratio. Using the expressions collected in [146, 96, 255] we find

〈Br(B → Xdγ)〉 = 〈BrSM〉+ 10−5
[
1.69

(
|∆C7|2 + |∆C ′7|2

)
+ 0.24

(
|∆C8|2 + |∆C ′8|2

)
+ 1.06 Re [∆C7∆C∗8 + ∆C ′7∆C ′∗8 ]− 3.24 Re(∆C7)

− 0.16 Im(∆C7)− 1.03 Re(∆C8)− 0.04 Im(∆C8)
]
,(3.4.25)

where all of the RS contributions to the b → d Wilson coefficients ∆C
(′)
7,8 are evaluated at

MKK.

3.4.4 Analytic estimate of constraints

Assuming anarchic Yukawa couplings, one may estimate the size of the RS contributions

to the Wilson coefficients in terms of the anarchic coefficients in Section 3.3.3,

|∆C7(MKK)b→s,dγ| ∼ 1

4
√

2GF

aY 2
∗ R
′2 ∼ 0.015 aY 2

∗

(
R′

1 TeV−1

)2

, (3.4.26)

|∆C ′7(MKK)b→sγ| ∼ 1

4
√

2GF

aY 2
∗ R
′2 ms

mb|Vts|2
∼ 0.18 aY 2

∗

(
R′

1 TeV−1

)2

, (3.4.27)

|∆C ′7(MKK)b→dγ| ∼ 1

4
√

2GF

aY 2
∗ R
′2 md

mb|Vtd|2
∼ 0.20 aY 2

∗

(
R′

1 TeV−1

)2

, (3.4.28)

where we neglect the misalignment contributions. Here Y∗ is the average size of the anar-

chic Yukawa couplings Yij which we assume to be equal for Yu and Yd.

Generically the contribution to the chirality-flipped operator C ′7 is larger than the one

to C7 by more than an order of magnitude. This is a direct consequence of the hierarchical

pattern of quark masses and CKM angles: in order to fit the observed spectrum, the left-
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handed bL quark has to be localized close to the IR brane, and consequently its flavor

violating interactions are far more pronounced than those of the right-handed bR.

Neglecting the subdominant contributions from ∆C7 and ∆C
(′)
8 , we can constrain the

size of ∆C ′7 by making use of the data on Br(B → Xsγ) and 〈Br(B → Xdγ)〉. We obtain the

following constraints from the master formulas and the experimental constraints quoted

above:

|∆C ′7(MKK)b→sγ| < 0.47 , |∆C ′7(MKK)b→dγ| < 0.77 . (3.4.29)

Using (3.4.27–3.4.28) and a ∼ 0.33 we can derive an upper bound on the size of the

Yukawa couplings, Y∗,

Y∗R
′

TeV−1 < 2.8 from B → Xsγ , (3.4.30)

Y∗R
′

TeV−1 < 3.4 from B → Xdγ , (3.4.31)

For R′ = 1 TeV−1 these are of the same order as the perturbativity bound on the Yukawa

coupling [151]. We see that the generic constraint from B → Xsγ is slightly stronger than

that from B → Xdγ due to the larger uncertainties in the latter case. However, since they

only differ by anO(1) factor, in specific cases the latter constraint may be more restrictive,

so one must take both processes into account when constraining the RS parameter space.

3.4.5 CP asymmetry inB → K∗γ

Like many extensions of the SM, RS generally induces large CP violating phases. It is

thus of great interest to also study CP violation in b → sγ transitions. While the direct

CP asymmetry in the inclusive B → Xsγ decay is in principle highly sensitive to NP

contributions, in practice the SM contribution is dominated by long-distance physics and
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therefore plagued by large non-perturbative uncertainties [85]. Consequently, a reliable

prediction in the presence of NP is difficult.

Fortunately, a theoretically much cleaner observable is provided by the B → K∗γ

decay. While its branching ratio is plagued by the theoretical uncertainty of the B → K∗

form factors, this form factor dependence largely drops out of the time-dependent CP

asymmetry [59, 69, 68]

Γ(B̄0(t)→ K̄∗0γ)− Γ(B0(t)→ K∗0γ)

Γ(B̄0(t)→ K̄∗0γ) + Γ(B0(t)→ K∗0γ)
= SK∗γ sin(∆Mdt)− CK∗γ cos(∆Mdt) . (3.4.32)

The coefficient SK∗γ is highly sensitive to new RS contributions. At leading order it is

given by [69, 33]

SK∗γ '
2

|C7|2 + |C ′7|2
Im
(
e−iφdC7C

′
7

)
, (3.4.33)

where the Wilson coefficients are to be taken at the scale µb. φd is the phase of B0–B̄0

mixing, which has been well measured in B0 → J/ψKS decays to be sinφd = 0.67 ± 0.02

[55].

From (3.4.33) we see that SK∗γ is very sensitive to new phsyics in the chirality flipped

operator C ′7 and vanishes in the limit C ′7 → 0. Consequently the SM prediction is sup-

pressed by the ratio ms/mb and is therefore very small [68],

SSM
K∗γ = (−2.3± 1.6)% . (3.4.34)

Measuring a sizable CP asymmetry SK∗γ would thus not only be a clear sign of physics

beyond the SM, but unambiguously indicate the presence of new right handed currents.

The present experimental constraint [55, 351, 61],

S
exp
K∗γ = −16%± 22%, (3.4.35)

is still subject to large uncertainties but already puts strong constraints on NP in b → s

transitions [33]. A significant improvement is expected soon from LHCb, and the next

generation B factories will reduce the uncertainty even further.
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3.5 SemileptonicB decays

SemileptonicB decays such asB → Xsµ
+µ− andB → K∗µ+µ− offer an interesting oppor-

tunity to not only look for deviations from the SM, but also to identify the pattern of NP

contributions and therewith distinguish various NP scenarios. These decays receive con-

tributions from semileptonic four-fermion operators (s̄b)(µ̄µ) in addition to the magnetic

dipole operators discussed earlier. While the dipole operators receive RS contributions

first at the one-loop level as required by gauge invariance, the four fermion operators are

already affected at tree level by the exchange of the Z boson and the heavy electroweak

KK gauge bosons.

In this section we discuss the effective Hamiltonian for b → sµ+µ− transitions. Sub-

sequently we will review a number of benchmark observables that are relevant for the

study of RS contributions.

3.5.1 Effective Hamiltonian for b→ sµ+µ− transitions

The effective Hamiltonian for b→ sµ+µ− reads

Heff = Heff(b→ sγ)− GF√
2
V ∗tsVtb

[
C9V (µ)Q9V (µ) + C ′9V (µ)Q′9V (µ)

+C10A(µ)Q10A(µ) + C ′10A(µ)Q′10A(µ)
]

+ h.c. , (3.5.36)

where we neglect the terms proportional to V ∗usVub, and

Q9V = 2(s̄γµPLb)(µ̄γ
µµ) Q′9V = 2(s̄γµPRb)(µ̄γ

µµ) (3.5.37)

Q10A = 2(s̄γµPLb)(µ̄γ
µγ5µ) Q′10A = 2(s̄γµPRb)(µ̄γ

µγ5µ). (3.5.38)
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In the SM only the unprimed Wilson coefficients are relevant. At the scale MW they are

given by

CSM
9V (MW ) =

α

2π

[
Y0(xt)

sin2 θW
− 4Z0(xt)

]
CSM

10A(MW ) = − α

2π

Y0(xt)

sin2 θW
(3.5.39)

where xt = m2
t/M

2
W and the dimensionless loop functions Y0(xt) ≈ 0.94 and Z0(xt) ≈ 0.65

are explicitly written in (3.27) and (3.28) of [112].

While C(′)
7 and C

(′)
8 receive the loop-level RS contributions calculated in Section 3.3,

C
(′)
9V and C

(′)
10A are corrected at tree level from the new flavor-changing couplings to the Z

boson and the exchange of neutral electroweak gauge boson KK modes. In this analysis

we only keep the leading contribution to each of these operators, i.e. we consider ∆C
(′)
7γ,8G

at one loop and ∆C
(′)
9V,10A at tree level. Strictly speaking, such an approach leads to an

inconsistent perturbative expansion, but it is reasonable to expect that the one loop cor-

rections to the latter Wilson coefficients are sub-dominant with respect to the tree level

contributions, and by considering only the RS tree level contribution one should still cap-

ture the dominant NP effects.

Explicit expressions for ∆C
(′)
9V and ∆C

(′)
10A can be straightforwardly obtained from [95].

These expressions can be written in terms of RG invariants ∆Y (′) and ∆Z(′) and the cou-

pling α, which itself is only very weakly scale dependent above MW . Thus one may use

these expressions to directly write the RS contributions at the scale MW ,

∆C9V =
α

2π

[
∆Ys

sin2 θW
− 4∆Zs

]
(3.5.40)

∆C ′9V =
α

2π

[
∆Y ′s

sin2 θW
− 4∆Z ′s

]
(3.5.41)

∆C10A = − α

2π

∆Ys
sin2 θW

(3.5.42)

∆C ′10A = − α

2π

∆Y ′s
sin2 θW

(3.5.43)
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The functions ∆Y (′) and ∆Z(′) are given by

∆Ys = − 1

V ∗tsVtb

∑
X

∆µµ
L (X)−∆µµ

R (X)

4M2
Xg

2
SM

∆bs
L (X) , (3.5.44)

∆Y ′s = − 1

V ∗tsVtb

∑
X

∆µµ
L (X)−∆µµ

R (X)

4M2
Xg

2
SM

∆bs
R (X) , (3.5.45)

∆Zs =
1

V ∗tsVtb

∑
X

∆µµ
R (X)

8M2
Xg

2
SM sin2 θW

∆bs
L (X) , (3.5.46)

∆Z ′s =
1

V ∗tsVtb

∑
X

∆µµ
R (X)

8M2
Xg

2
SM sin2 θW

∆bs
R (X) . (3.5.47)

Here the summation runs over X = Z,Z(1), A(1) in the minimal model and over X =

Z,ZH , Z
′, A(1) in the custodial model. The 4D fermion gauge boson couplings ∆ij

L,R(X)

are defined in (3.21–3.22) of [95]. Furthermore

g2
SM =

GF√
2

α

2π sin2 θW
. (3.5.48)

The tree level contributions to b → sµ+µ− transitions in the minimal RS model are

evaluated in [73] without making the approximations of taking into account only the

first KK modes or treating the Higgs vacuum expectation value as a perturbation. In

this paper we are mainly interested in the effects of ∼ 2.5 TeV KK modes. As these are

ruled out in the minimal model by precision electroweak constraints, we focus on the

phenomenological effects of the custodial RS model on these transitions.

For the study of observables related to b→ sµ+µ−, it is useful to introduce the effective

Wilson coefficients at the scale µb that include the effects of operator mixing,

Ceff
7 = (Ceff

7 )SM + ∆C7(µb) , C ′eff
7 = (C ′eff

7 )SM + ∆C ′7(µb) , (3.5.49)

Ceff
9V (q2) = (Ceff

9V )SM(q2) +
2π

α
∆C9V , C ′eff

9V =
2π

α
∆C ′9V , (3.5.50)

Ceff
10A = (Ceff

10A)SM +
2π

α
∆C10A , C ′eff

10A =
2π

α
∆C ′10A . (3.5.51)
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The SM values of the effective Wilson coefficients can be found in Table 2 of [32], which

also gives the q2 dependence of (Ceff
9V )SM(q2) in terms of a linear combination of the other

Wilson coefficients. While in principle all contributions have to be taken at the scale µb,

the NP contributions to C(′)
9V,10A are invariant under renormalization group evolution.

With these effective Wilson coefficients at the B scale, we are now equipped to study

observables in b → sµ+µ− transitions. While this system offers a plethora of observables

for study, a detailed analysis of all of them is beyond the scope of this paper, and we

concentrate on studying a few benchmark observables that are particularly relevant for

RS physics. A numerical analysis is presented in Section 3.6.

In passing we would like to remark on the pattern of contributions to C
(′)
9V,10A in the

custodial model, as pointed out in [95]. Due to the suppression of flavor violating ZdiLd̄
j
L

couplings by the discrete PLR symmetry, the main contributions arise in the primed Wil-

son coefficients C ′9V,10A, which are absent in the SM. Since the right-handed b quark, lo-

calized significantly further away from the IR brane than the left-handed one, is far less

sensitive to flavor violating effects introduced by the RS KK modes, the RS effects in

Y
(′)
s , Z

(′)
s turn out to be rather small (typically below 10%). This pattern is very different

from the minimal model, where the PLR suppression mechanism is absent and large tree

level flavor violating Z couplings to left-handed dow-type quarks are present.
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3.5.2 Benchmark observables

Br(B → Xsµ
+µ−)

For very low lepton invariant mass q2 → 0, the B → Xsµ
+µ− transition is completely

dominated by the photon pole and doesn’t provide any new insight with respect to the

B → Xsγ decay discussed above. Furthermore, in the intermediate region 6 GeV2 <

q2 < 14.4 GeV2 the sensitivity to NP is very small, as the decay rate in this region is

completely dominated by charm resonances. Hence one usually restricts oneself to either

the low q2 region 1 GeV2 < q2 < 6 GeV2, or the high q2 region q2 > 14.4 GeV2. In what

follows we will consider only the low q2 region. While the high q2 region is potentially

interesting since it exhibits a small tension between SM prediction [254] and experimental

data [60, 264], it is far less sensitive to NP in C(′)
7 , which is the main focus of this study. In

the custodial RS model, the tension in the high q2 region cannot be resolved since the new

contributions to C(′)
9V,10A are generally small [95]. In addition, the high q2 region is subject

to larger theoretical uncertainties.

In the low q2 region, adapting the formulae of [173] to the more general case of com-

plex NP contributions, we find

Br(B → Xsµ
+µ−)low q2 = Br(B → Xsµ

+µ−)low q2

SM + ∆Br(B → Xsµ
+µ−)low q2 (3.5.52)

with the NNLL prediction [252]

Br(B → Xsµ
+µ−)low q2

SM = (15.9± 1.1) · 10−7 (3.5.53)
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and the NP contribution [173]

∆Br(B → Xsµ
+µ−)low q2 ' 10−7 ·

[
− 0.517 Re(∆C7(µb))− 0.680 Re(∆C ′7(µb))

+ 2.663 Re(δC9V )− 4.679 Re(δC10A)

+ 27.776
(
|∆C7(µb)|2 + |∆C ′7(µb)|2

)
+ 0.534

(
|δC9V |2 + |δC ′9V |2

)
+ 0.543

(
|δC10A|2 + |δC ′10A|2

)
+ 4.920 Re (∆C7(µb)δC

∗
9V + ∆C ′7(µb)δC

′∗
9V )
]
,(3.5.54)

where we defined

δCi =
2π

α
∆Ci. (3.5.55)

Note that we dropped all interference terms between unprimed and primed contributions

since they are suppressed by a factorms/mb and therefore small. The only exception is the

term linear in ∆C ′7, which receives a large numerical enhancement factor, and is therefore

non-negligible; hence we keep it in our analysis.

The measurements of BaBar [60] and Belle [264] yield the averaged value

Br(B → Xsµ
+µ−)low q2

exp = (16.3± 5.0) · 10−7. (3.5.56)

As LHCb is not well suited for performing inclusive measurements, a significant reduc-

tion of uncertainties will only be feasible at the next generation B factories Belle-II and

SuperB [63, 101, 316, 303].

B → K0∗(→ πK)µ+µ−

While the inclusive B → Xsµ
+µ− mode is theoretically very clean, such measurements

are experimentally challenging, and competitive results (in particular for angular distri-

butions) will not be available before the Belle II and SuperB era [63, 101, 316, 303]. For
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this reason, exclusive decay modes have received well-deserved attention. An especially

interesting decay is B → K∗(→ Kπ)µ+µ−, where a plethora of angular observables can

be studied thanks to the four-body final state [33, 32, 283, 191, 192, 299, 100]. These can

provide detailed information on the operator and flavor structure of the underlying NP

scenario.

The downside is that many B → K∗(→ Kπ)µ+µ− observables, such as the branching

ratio and differential decay distribution, are plagued by large theoretical uncertainties

in the determination of the B → K∗ matrix elements governed by long-distance non-

perturbative QCD dynamics. These matrix elements are most conveniently described

by a set of seven form factors. Presently, the best predictions for these form factors at

large final state meson K∗ energies, i.e. small lepton invariant mass q2, stem from QCD

sum rules at the light cone [140]. Furthermore, non-factorizable corrections are calculated

using QCD factorization, which is only valid in the low q2 regime.3 On the other hand,

as mentioned above, at very low q2 < 1 GeV2 the b → sµ+µ− transition is dominated

by the C(′)
7 contributions due to the infrared photon pole and therefore does not provide

any insight beyond what is already obtained from b → sγ. Consequently, we henceforth

restrict our attention to the range 1 GeV2 ≤ q2 ≤ 6 GeV2.

Fortunately, it is possible to partly circumvent the theoretical uncertainties by study-

ing angular observables that are less dependent on the form factors in question. Detailed

analyses of their NP sensitivity and discovery potential have been performed by vari-

ous groups, both model-independently and within specific NP scenarios [33, 32, 283, 191,

192, 299]. We leave such a detailed analysis in the context of RS models for future work.

We focus instead on two benchmark observables, the forward backward asymmetry AFB,

3Significant progress has recently been made on the form factor predictions in the large q2 region [88, 81,
235, 82]; nevertheless we will not consider this kinematic regime since it is less sensitive to NP entering C(′)

7

than the low q2 region.
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which is experimentally well constrained, and the transverse asymmetry A(2)
T , which of-

fers unique sensitivity to NP in the primed Wilson coefficients.

We note that the recently measured CP asymmetry A9 [6, 2], as defined in [32, 99], is

also very sensitive to NP in C ′7 and therefore is in principle an interesting observable to

look for RS effects. Because it is sensitive to the phase of C ′7, it yields partly complemen-

tary information with respect to the CP conserving transverse asymmetry A(2)
T . Although

this CP asymmetry is theoretically very clean, contrary to those studied in [192], we leave

a detailed study within RS for future work.

Forward backward asymmetry The forward-backward asymmetryAFB inB → K∗µ+µ−

decays is defined by

AFB(q2) =
1

dΓ/dq2

(∫ 1

0

d(cos θµ)
d2Γ

dq2d(cos θµ)
−
∫ 0

−1

d(cos θµ)
d2Γ

dq2d(cos θµ)

)
, (3.5.57)

where θµ is the angle between the K∗ momentum and the relative momentum of µ+

and µ−. AFB has recently received a lot of attention as data from BaBar, Belle, and the

Tevatron seem to indicate a deviation from the SM, albeit with low statistical significance

[62, 263, 6]. On the other hand, recent LHCb data [1] show excellent agreement with the

SM prediction, and as uncertainties are presently dominated by statistics, an improved

measurement should be available soon.

A precise theoretical determination of AFB is appealing since it offers a sensitive probe

of the helicity of NP contributions. To leading order, the forward backward asymmetry is

proportional to [99]

AFB(q2) ∝ Re
[(
C9V (q2) +

2m2
b

q2
C7

)
C∗10A −

(
C ′9V +

2m2
b

q2
C ′7

)
C ′∗10A

]
, (3.5.58)

where we dropped the superscript “eff” for the effective Wilson coefficients at the scale

µb, (3.5.49–3.5.51). From (3.5.58) we can see explicitly that AFB does not receive contribu-
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tions from the interference of different chirality operators (unprimed and primed). Con-

sequently, with the SM contribution being the dominant effect, potential non-standard

effects in AFB arise mainly from NP in C7 and C9V . On the other hand, AFB is rather insen-

sitive to NP in the primed Wilson coefficients C ′7γ,9V,10A.

AFB has been studied in the context of the minimal RS model considering only tree

level contributions and omitting loop level dipole contributions to C(′)
7 [73], where small

positive contributions to AFB were found. While AFB is very sensitive to NP effects in C7,

the RS dipole contributions we calculated predict rather small contributions to this Wilson

coefficient. On the other hand, AFB is insensitive to C ′7, where RS effects are expected to be

more pronounced over the SM. Thus the overall prediction of small deviations ofAFB from

the SM obtained in [73] remains consistent with our calculations. Note that the restriction

to tree level RS effects is not necessarily a good approximation for observables sensitive

to C ′7, such as FL, which was also studied in [73]. A detailed study including one-loop

contributions to the dipole operators would therefore be desirable but lies beyond the

scope of the present analysis.

In the custodial RS model, due to the protection of the ZdiLd̄
j
L vertex [94], the RS con-

tributions to C9V,10A are highly suppressed, and only the new contributions to the primed

operators are relevant. As AFB is insensitive to the latter Wilson coefficients, it remains

very close to the SM prediction.

We conclude that RS effects in the forward backward asymmetry AFB are generally

small, so the recent data from LHCb do not pose any stringent constraint on the minimal

or custodial model, the latter being even more insensitive to RS contributions.
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Transverse asymmetry A(2)
T The asymmetries A(i)

T , which are introduced in [191, 282],

offer a particularly good probe of NP in b→ sµ+µ− transitions since at leading order they

are free of any hadronic uncertainties and are given in terms of calculable short distance

physics. In this paper we will restrict ourselves to the study of the asymmetry

A
(2)
T =

|A⊥|2 − |A‖|2
|A⊥|2 + |A‖|2

. (3.5.59)

Here A⊥ and A‖ are the transversity amplitudes [282] describing the polarization of the

K∗ and the µ+µ− pair; both are transverse with linear polarization vectors perpendicular

(⊥) or parallel (‖) to each other. In the limit of heavy quark (mB →∞) mass and large K∗

energy (small q2), this asymmetry takes a particularly simple form [192]

A
(2)
T (q2) =

2 [Re(C ′10AC
∗
10A) + F 2 Re(C ′7C

∗
7) + F Re(C ′7C

∗
9V )]

|C10A|2 + |C ′10A|2 + F 2 (|C7|2 + |C ′7|2) + |C9V |2 + 2F Re(C7C∗9V )
(3.5.60)

with F = 2mbmB/q
2, and we have again dropped the superscript “eff” from the Wilson

coefficients. In this limit it is clear thatA(2)
T is independent of form factors and is governed

only by calculable short distance physics, making this observable theoretically clean. Sec-

ond, we notice that since the primed Wilson coefficients are highly suppressed in the SM,

(A
(2)
T )SM is very small. A(2)

T therefore offers unique sensitivity to NP entering dominantly

in the primed operators C ′7γ,9V,10A. This asymmetry is thus a benchmark observable for

discovering RS physics in B → K∗µ+µ− decays. We investigate the possible size of RS

contributions to this channel in our numerical analysis in the next section.

A first measurement of A(2)
T recently presented by CDF [6] is still plagued by large

uncertainties. LHCb has recently put more stringent constraints on this asymmetry, and

more precise measurements will be possible in the near future [2].
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3.6 Numerical analysis

3.6.1 Strategy

In this section we present a numerical analysis of the observables introduced in the pre-

vious sections. To this end we follow the following strategy:

1. The first goal is to understand the generic pattern of effects induced by RS penguins

on flavor observables. We generate a set of parameter points that satisfy the known

experimental constraints from quark masses and CKM parameters. However, we do

not yet impose any additional flavor bounds so as not to be biased by their impact.

With these points we evaluate the new RS contributions to the Wilson coefficients

∆C
(′)
7 and ∆C

(′)
8 at the KK scale for both the minimal and the custodial model. Sub-

sequently we calculate the new contributions to the branching ratios of B → Xs,dγ

and analyze the constraints.

2. The second goal is to understand the effect of the RS penguins on the existing pa-

rameter space for realistic RS models. We restrict our attention to the custodial

model, which can be made consistent with electroweak precision tests for KK scales

as low as MKK ' 2.5 TeV. In addition to quark masses and CKM parameters, we

now also impose constraints from ∆F = 2 observables which are analyzed at length

in [94]. After evaluating the size of the effects in the B → Xs,dγ branching ratios and

their constraint on the model, we study the benchmark observables outlined above,

namely the CP asymmetry in B → K∗γ, the branching ratio Br(B → Xsµ
+µ−), and

the transverse asymmetry A(2)
T in B → K∗µ+µ− decays.
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Throughout our analysis we restrict ourselves to 1/R′ = 1 TeV, so that the lowest KK

gauge bosons have a mass ofMKK ' 2.5 TeV. We note that in the minimal model such low

KK masses are already excluded due to unacceptably large corrections to electroweak pre-

cision observables. However, we use the same mass scale for both the minimal and cus-

todial models to enable a straightforward comparison of the two sets of results. Further-

more, we restrict the fundamental Yukawa couplings to lie in their perturbative regime,

i. e. |Yij| ≤ 3. More details on the parameter scan can be found in [94].

3.6.2 General pattern of RS contributions

This part of the numerical analysis is dedicated to determining the size of NP effects

generated by the RS KK modes in the dipole operators C7, C ′7 and C8, C ′8 mediating the

b → (s, d)γ and b → (s, d)g transitions respectively. We advise caution when interpreting

the density of points since these distributions are influenced by the details of the parame-

ter scan performed. The qualitative features in our plots should remain unaffected by the

scanning procedures.

The first row of Fig. 3.4 shows the RS contributions to C7(MKK) and C ′7(MKK) in the

b → s system. Observe that the total RS contribution (red and blue histograms, corre-

sponding to the minimal and custodial model) to the primed Wilson coefficient is typi-

cally an order of magnitude larger than the corresponding effect in the unprimed Wilson

coefficient. This matches the naive expectation that the bL → sR transition should be

enhanced relative to bR → sL due to the hierarchy fQ3 � fbR of fermion localizations.

Furthermore the custodial contribution is somewhat enhanced relative to the minimal

one, due to the additional fermion modes running in the loop. Also shown, in yellow,

is the contribution to C7(MKK) and C ′7(MKK) generated by only the misalignment term,
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Figure 3.4: RS contributions to the b → s Wilson coefficients C7(MKK) (upper left),
C ′7(MKK) (upper right), C8(MKK) (lower left) and C ′8(MKK) (lower right) in the minimal
(red) and custodial (blue) models, and from the misalignment contribution alone (yel-
low).

which is equal for the minimal and the custodial models. Unlike the anarchic term, this

contribution is generically comparable in both cases. This naively unexpected behavior

is explained in Appendix B.2. While it is subdominant but non-negligible in the case of

C7(MKK), it turns out to be generally irrelevant in the case of C ′7(MKK).

The second row of Fig. 3.4 shows the results for the gluonic penguin Wilson coeffi-

cients C8 and C ′8. The values at the KK scale are larger than the corresponding values of

C7 and C ′7 by about an order of magnitude due to the large contribution from the diagram

containing the non-Abelian SU(3)c vertex, which is absent in the b → sγ penguin. Other

than that, the pattern of effects is qualitatively similar to that for C(′)
7 : the primed Wilson
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Figure 3.5: RS contributions to the b → sγ Wilson coefficients C7 (left) and C ′7 (right),
evaluated at the scale µb = 2.5 GeV. The minimal model distribution is shown in red, and
the custodial one in blue.

coefficient is larger than the unprimed coefficient by about an order of magnitude, and the

custodial model yields somewhat bigger effects than the minimal model. Furthermore,

the misalignment contributions to the unprimed and primed Wilson coefficients are again

roughly comparable; consequently, its effect is negligible in C ′8 but can be sizable in C8.

To facilitate comparison with other models of NP, Fig. 3.5 shows the RS contributions

to the b → sγ Wilson coefficients C7 (left) and C ′7 (right) evaluated at the scale µb =

2.5 GeV, i.e. taking into account the RG evolution and operator mixing with C(′)
8 . The RS

contribution to C7 turns out to be small and typically constitues less than a few percent

of the SM value C ′7(µb)
SM = −0.353. On the other hand, C ′7 is suppressed by ms/mb in

the SM, so the unsuppressed contribution from RS dominates, though its value is still

typically smaller than C7(µb)
SM.

Next, we examine the relative importance of the various RS contributions to the effec-

tive b → sγ Wilson coefficients at the scale µb. Fig. 3.6 shows the size of the two main

anarchic contributions to ∆C
(′)
8 (MKK) (see Fig. 3.2a for the relevant Feynman diagrams)

normalized to the anarchic contribution to ∆C
(′)
7 (MKK) (see Fig. 3.1a). For a straightfor-

ward comparison, we also include the relevant RG evolution factors from eq. (3.4.24). The
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Figure 3.6: Relative sizes of anarchic contributions to the Wilson coefficients C7(µb) (left)
and C ′7(µb) (right) from the RG evolution and operator mixing of ∆C

(′)
8 from MKK to µb,

normalized to the Higgs penguin contribution to ∆C
(′)
7 (MKK), with relevant RG evolu-

tion factors included. The yellow bin shows the ratio of the Higgs penguin contribution
to ∆C

(′)
8 (MKK). The red and blue distributions show the ratio of the gluon penguin to

∆C
(′)
8 (MKK) for the minimal and custodial model respectively.

ratio of the Higgs penguin contribution to ∆C
(′)
7 (MKK) and ∆C

(′)
8 (MKK), shown by the yel-

low band, is constant and equal for both the minimal and custodial model. As the relevant

diagrams depend on the same loop integral and the same combination of Yukawa cou-

plings, their relative size at the KK scale is simply given by the electric charge Qu of the

up-type quark coupled to the photon. After including the RG running down to the scale

µb, the Higgs penguin contribution to C(′)
8 turns out to be roughly a 50% correction to the

effect of the anarchic ∆C
(′)
7 (MKK) contribution.

The effect of the gluon penguin diagram in ∆C
(′)
8 (MKK) depends on a different loop

integral and a different combination of Yukawa couplings than the Higgs diagram in

∆C
(′)
7 (MKK). Consequently its relative size, again including the relevant RG factors, varies

considerably within the minimal (shown in red) and the custodial (shown in blue) model.

Observe that the distribution for the minimal model is rather symmetric and peaked

around 1, implying that the RS b → s g loop generally contributes as much as the RS

b → sγ loop in low energy observables, even yielding the dominant RS contribution in
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parts of the parameter space. This should be contrasted to the SM case, where the C8 con-

tribution only gives a few percent correction to the dominant C7 contribution. In the cus-

todial model the gluon penguin contribution becomes even more important, so that the

peak of the distribution gets shifted above 1. Since, as opposed to the Higgs penguin, the

additional custodial gluon penguin diagram shown in Fig. 3.3 carries the same Yukawa

spurion as the minimal model diagram, they simply add constructively, further enhanc-

ing the effect of the gluonic penguin contribution. Neglecting these contributions or even

the C(′)
8 contribution as a whole, as sometimes done in the literature, would therefore be

a rather poor approximation. Note that the relative importance of the gluon penguin di-

agrams depends crucially on the matching of the 5D to the 4D strong gauge coupling.

Invoking one loop level matching rather than tree level matching as done here whould

reduce their relative size by roughly a factor of four. On the other hand the presence of

brane kinetic terms could further enhance the gluonic penguin contribution.

Fig. 3.7 is analogous to Fig. 3.4 for the b → d system. The pattern of effects is very

similar to the case of the b→ s system discussed above.

Fig. 3.8 shows the predicted deviations from the SM in theB → Xs,dγ branching ratios

in the minimal and custodial models. We observe that in both models these branching

ratios typically obtain a moderate positive NP contribution well within the current exper-

imental and theoretical uncertainties. Nevertheless, the decays in question put nontrivial

constraints on parts of the RS parameter space and should be included in a complete anal-

ysis of RS flavor phenomenology. As expected from the size of the Wilson coefficients, the

custodial model induces somewhat larger effects than the minimal model.

Interestingly, this pattern of effects is very different from that of the ADD model of a

universal extra dimension [42], where the KK excitations affect mainly the Wilson coeffi-
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Figure 3.7: RS contributions to the b → d Wilson coefficients C7(MKK) (upper left),
C ′7(MKK) (upper right), C8(MKK) (lower left) and C ′8(MKK) (lower right) in the minimal
model (red), the custodial model (blue), and from the misalignment contribution alone
(yellow).

Figure 3.8: RS contribution to Br(B → Xsγ) (left) and 〈Br(B → Xdγ)〉 in the minimal
(red) and custodial (blue) model. The experimental constraints according to (3.4.21) and
(3.4.22) are displayed as grey bands.
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cient C7, while the opposite-chirality Wilson coefficient C ′7 remains very small [15, 116].

Since the ADD contribution interferes destructively with the SM contribution, a rather

pronounced suppression of Br(B → Xsγ) is predicted, which was used in [244] to derive

the bound 1/R > 600 GeV on the radius R of the extra dimension.

3.6.3 Effects on benchmark observables

We now restrict our attention to the custodial model and consider only parameter points

that agree with the existing constraints from ∆F = 2 transitions, as analyzed in [94]. We

also impose the bounds from the B → Xs,dγ decays as approximated in (3.4.21–3.4.22), so

that all points displayed in the plots lie within the experimentally allowed region.

Since the dipole operators depend on a different combination of RS flavor parameters

than the tree level contributions to ∆F = 2 processes [94] and ∆F = 1 rare decays [95],

observables related to the various sectors are essentially uncorrelated; hence we do not

show any numerical results here.

Fig. 3.9 shows the correlation between the time-dependent CP asymmetry SK∗γ and

the branching ratio of B → Xsγ. Observe that SK∗γ can receive large enhancements rela-

tive to its tiny SM value. While non-standard effects in SK∗γ are possible for any value of

Br(B → Xsγ), large effects are more likely with enhanced values of the branching ratio.

This is related to the fact that RS contributions dominantly affect C ′7. While the SM pre-

diction for B → Xsγ is in good agreement with data, it lies below the central value, and

an enhancement of this branching ratio is preferred. One can also see that large enhance-

ments are possible in SK∗γ , and that the present experimental 2σ range excludes only a

small fraction of the RS parameter space.
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Figure 3.9: CP asymmetry SK∗γ as a function of Br(B → Xsγ). The black dot indicates the
central SM prediction, while the dashed lines show the experimental central values. The
grey bands display the experimental 1σ and 2σ ranges for SK∗γ .

Figure 3.10: Correlation between Br(B → Xsγ) and Br(B → Xsµ
+µ−) for q2 ∈ [1, 6] GeV2.

The black dot indicates the central SM prediction, while the dashed lines show the exper-
imental central values.
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Figure 3.11: Transverse asymmetryA(2)
T as a function of q2. The SM prediction is indicated

by the black line, while each blue line corresponds to an RS parameter point.

The decay B → Xsµ
+µ− poses strong constraints on various extensions of the SM,

hence it is worth studying it in the custodial RS model. Fig. 3.10 shows the custodial RS

branching ratio Br(B → Xsµ
+µ−) in the low q2 region as a function of Br(B → Xsγ). We

observe that the enhancement in the custodial RS model is rather small, typically below

10%. Due to the experimental and theoretical uncertainties involved, this channel does

not put any significant constraint on the model.

Observables far more sensitive to NP in C ′7 can be constructed from the angular distri-

bution of B → K∗µ+µ−. Of particular interest is the transverse asymmetry A(2)
T , whose q2

dependence is shown in Fig. 3.11. Observe that large enhancements relative to the small

SM value are possible, in particular in the very small q2 region < 2 GeV2. This pattern

can be understood from (3.5.60): the C ′7 contribution is enhanced at small q2 due to a

1/q2 factor, see also [192, 75]. The differential asymmetry would exhibit a very different

shape if the dominant NP contribution appeared in C ′10A. This underlines the model-

discriminating power of the A(2)
T asymmetry—in the custodial RS model a deviation from

the SM is most likely to be observed for small q2, whereas other models that dominantly
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Figure 3.12: Correlation between SK∗γ and A
(2)
T (q2 = 1 GeV2). The black dot indicates the

central SM prediction, while the dashed line shows the experimental central value. The
grey bands display the experimental 1σ and 2σ ranges for SK∗γ .

affect C ′10A predict large effects for larger q2. This pattern is particularly interesting in

light of LHCb and the next generation B factories, which will soon be able to measure

this asymmetry.

Finally, one may consider a possible correlation between SK∗γ and A
(2)
T . Both observ-

ables are mostly affected by a large C ′7, hence some nontrivial correlation can be expected.

On the other hand, SK∗γ is CP violating while A(2)
T is CP conserving, so the phase of C ′7

can wash out such correlations. Fig. 3.12 shows A(2)
T (q2 = 1 GeV2) as a function of SK∗γ ,

where a nontrivial linear anti-correlation is seen between the two observables in ques-

tion. However, this correlation is visibly weakened by the impact of the phase of C ′7, as

expected.
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3.7 Conclusions

In this paper we have performed an explicit 5D calculation of the dominant contributions

to the Wilson coefficients C7, C ′7, and C8, C ′8 that mediate the b → s, dγ and b → s, d g

transitions respectively, in the RS setup with bulk fermions and gauge bosons and an IR-

brane localized Higgs. We have evaluated the relevant diagrams for both the minimal

scenario with only the SM gauge group in the bulk, and for the custodial model with the

electroweak gauge group extended by SU(2)R and a discrete PLR symmetry. Our main

findings from this analysis can be summarized as follows:

• The RS contributions to C ′7 typically exceed those to C7 by an order of magnitude,

and the latter remain a rather small correction to the SM value. This pattern can

be understood by considering the bulk profiles of the quark fields involved: the

primed Wilson coefficient describes the decay of a left-handed b quark, which, be-

ing localized towards the IR brane, is more sensitive to flavor violating effects than

the right-handed b quark entering C7. Analogous comments apply regarding the

hierarchy C8 � C ′8.

• Contrary to the SM, where C8 < C7, RS contributions to the gluonic penguins are

larger than the ones to the photonic penguins. This results from the large contri-

butions from the diagram containing the non-abelian triple gluon (KK gluon) ver-

tex, which is absent in C
(′)
7 and does not change flavor in the SM. In addition, the

renormalization group mixing of C(′)
7 and C

(′)
8 is more pronounced due to the large

separation of the MKK and mb scales. Consequently, gluonic penguin contributions

have a significant impact on b → s, dγ, comparable to or larger than the photonic

penguin contribution. This is in contrast to the SM, where they yield only a few

percent correction to the photonic Wilson coefficients at the mb scale.
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• In all cases, the dominant effect comes from the anarchic contributions, which are

not aligned with the SM quark mass matrices. However, the unprimed (right to left)

operators pick up appreciable contributions from misalignment diagrams, which

are proportional to the SM quark mass matrices up to a dependence on the bulk

spectrum. This is because, in contrast to the anarchic diagrams, the misalignment

diagrams are not suppressed by the bR wave function relative to the bL wavefunc-

tion, as explained in Appendix B.2.

• The impact on the Wilson coefficients in question is somewhat larger in the custo-

dial model than in the minimal model, since the extended fermion content that was

introduced to reconcile the model with the Zbb̄ constraint yields additional contri-

butions.

For a study of the phenomenological implications of these new contributions, we re-

stricted our attention to the custodial model since the minimal model is not consistent

with electroweak precision constraints for low KK masses MKK = 2.5 TeV. To this end,

following [94] we performed a parameter scan of the 5D bulk masses and fundamental

Yukawa coupling matrices, imposing constraints from quark masses and CKM parame-

ters and from meson-antimeson mixing. We studied the bounds provided by the branch-

ing ratios Br(B → Xsγ) and 〈Br(B → Xdγ)〉 and the effects in a number of benchmark

observables, namely the time-dependent CP asymmetry SK∗γ , the inclusive branching

ratio Br(B → Xsµ
+µ−) and the forward-backward asymmetry AFB and the transverse

asymmetry A(2)
T in B → K∗µ+µ−, where we found the following patterns:

• The branching ratios of the radiative inclusive B → Xs,dγ decays provide a non-

negligible constraint on RS models and exclude roughly 15% of the parameter points

generated for the custodial model that were in agreement with bounds from ∆F = 2
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observables. A complete phenomenological study should therefore take these con-

straints into account. However, since the major part of parameter space survives,

no useful bound on the KK scale can be derived.

• Due to more precise data and SM theory prediction, Br(B → Xsγ) generally puts

a stronger constraint on the RS parameter space than 〈Br(B → Xdγ)〉. The latter

observable is still useful as it yields complementary information on the allowed

parameter space.

• As the RS contributions enter dominantly through the primed operators, a modest

enhancement of the B → Xs,dγ branching ratios can be expected, although a slight

suppression is not rigorously excluded. Such an enhancement would be welcome

in B → Xsγ, where the data lie somewhat above the SM value, albeit still in good

agreement. On the other hand, for B → Xdγ the central values of the SM and the

data are in excellent agreement and the uncertainties are sizable, and no prefered

sign for the NP contribution can be deduced.

• The inclusive branching ratio Br(B → Xsµ
+µ−) and the forward backward asymme-

try AFB in B → K∗µ+µ− receive very small corrections from RS physics and remain

in good agreement with recent data. While we restricted our analysis to the low q2

region, these statements also apply to the high q2 region since the latter region is

mostly sensitive to NP in the electroweak Wilson coefficients C(′)
9V,10A, which remain

SM-like in the custodial model.

• We identify the time-dependent CP asymmetry SK∗γ in B → K∗γ decays and the

transverse asymmetryA(2)
T in the low q2 region ofB → K∗µ+µ− as promising bench-

mark observables to look for large effects generated by the custodial RS model. Both

observables are known to be very sensitive to the primed Wilson coefficients, in par-

ticularC ′7, which is dominantly affected by RS contributions. Furthermore, studying
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the q2 dependence of A(2)
T allows for a clear distinction of models such as the custo-

dial RS model that dominantly affect C ′7 from models that predict large NP effects

in the electroweak Wilson coefficient C ′10A.

In summary, our analysis shows that radiative and semileptonic B decays offer in-

triguing possibilities to find deviations from the SM generated by RS KK modes and an-

archic Yukawa structure. If such effects are found at the LHCb and the next generation B

factories, it will be particularly interesting to study the plethora of observables provided

by these decay modes in a correlated manner, which offers the ability to distinguish RS

with custodial symmetry from other NP scenarios that predict a different pattern of ef-

fects.
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CHAPTER 4

SPONTANEOUS R-SYMMETRY BREAKING WITH MULTIPLE PSEUDOMODULI

Based on the 2012 article “Spontaneous R-symmetry breaking with multiple

pseudomoduli”, written in collaboration with David Curtin, Zohar Komargodski, David

Shih and published in arXiv:1202.5331
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4.1 Introduction

The O’Raifeartaigh (O’R) model [318] and its generalizations constitute the simplest the-

ories which spontaneously break supersymmetry (SUSY). Despite their simplicity, they

are interesting subjects for study, because they often arise as low-energy effective theories

of models which dynamically break SUSY [261, 266, 262, 181].

Spontaneous SUSY breaking generically requires the existence of anR-symmetry [314].

An unbroken R-symmetry forbids Majorana gaugino masses, so if SUSY is relevant to

nature at the TeV scale, R-symmetry must be broken somehow.1 In this paper we will ex-

amine the possibility of spontaneousR-symmetry breaking in generalized O’Raifeartaigh

models (renormalizable Wess-Zumino models with F -term SUSY-breaking).

In general one can envision either tree-level spontaneousR-breaking or radiatively in-

duced breaking [333]. Models that break theR-symmetry at tree-level exist [123, 345, 274],

but they are rather cumbersome and have not yet been found naturally in dynamical

models of SUSY breaking. One is therefore led to investigate the possibility of radia-

tively broken R-symmetry. In fact, radiative effects in Wess-Zumino models have always

played a pivotal role because any SUSY-breaking vacuum is necessarily accompanied by

a flat direction [332]. (Such flat directions in Wess-Zumino models are often called pseu-

domoduli.) Hence, to determine the correct vacuum of the theory one is generally forced

to consider radiative effects.

A special class of generalized O’R models consists of theories where all the R-charges

are either 0 or 2. Several well-known dynamical models of calculable SUSY breaking lead

to such theories (e.g. [262, 261, 266]); hence our interest in this class. For such theories one

1One can also consider models with Dirac mass terms for the gauginos, see for instance the general
analysis of [80] and references therein.
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can prove the absence of tree-level R-breaking [274]. In addition, it was shown in [341]

that in models with a single pseudomodulus, spontaneous R-breaking through the one-

loop Coleman-Weinberg (CW) potential required the presence of fields with R-charges

other than 0 or 2. This theorem has often been used to guide model building.

In this paper, we will generalize the result of [341] to O’R models with arbitrarily

many pseudomoduli fields. We will show that even in this case, if all the R-charges are

0 or 2, the one-loop effective potential has a local minimum at the R-symmetric origin

of field space (which could be a manifold in general). Additionally, we will also show

that pseudomoduli can remain massless after one-loop corrections are taken into account

only if they are in fact manifestly decoupled in the Lagrangian at the one-loop level. Such

pseudomoduli can receive important two-loop corrections (see e.g. [226, 260, 36]), and it

would be interesting to investigate these two-loop corrections in general.

We do not consider the general problem of Wess-Zumino models withR-charges other

than 0, 2. That is left as an interesting problem for the future. For the case of a single

pseudomodulus it was argued [341] that there is no obstruction to obtaining R-symmetry

breaking. It would be interesting to see precisely how this works if more than one pseu-

domodulus is present. Another obvious generalization of our study is to introduce gauge

fields. Introducing gauge fields can lead to a variety of interesting phenomena, such as

spontaneous radiative breaking, and even classical destabilization of all the vacua [300].

This work was partly motivated by recent interesting papers which considered the

possibility of spontaneous R-symmetry breaking with additional pseudomoduli [338,

195]. In specific models, it was found by explicit computations that loop corrections pre-

serve the R-symmetry. In [195], it was also shown that having a single additional pseu-

domodulus did not induce spontaneous R-breaking at one-loop and at leading order in
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SUSY breaking. Here we provide the general derivation for arbitrarily many pseudomod-

uli, and to all orders in SUSY breaking.

Our short note proceeds as follows. In Section 4.2 we define the most general

O’Raifeartaigh model containing only R-charges 0 and 2 and discuss the relevant terms.

In Section 4.3 we explicitly calculate the effective potential, and show that the generated

mass matrix for R = 2 fields at the origin is positive semi-definite. For completeness, we

analyze the zero modes of this mass matrix in Section 4.4 and explicitly confirm that they

can only arise for fields that are completely decoupled from SUSY breaking at one-loop

order. For such zero modes one would need to investigate higher-order effects in order

to determine the vacuum of the theory (or its absence). An appendix summarizes some

technical details pertaining to Section 4.4.

4.2 Model Definition

Consider any theory with R-charges 0, 2 only. Label the R-charged fields X , σi, i =

1, . . . , N2 and the R = 0 fields ρa, a = 1, . . . , N0. By a simple scaling argument of the

R-charged fields, it is clear that from any field configuration one can find a path that

terminates at σi = 0 and along which the tree-level potential strictly decreases [274]. In

other words, from every point one can continuously lower the classical energy until anR-

symmetric point is reached. (It can also be that the energy along this path stays constant,

but by simply rescaling the R-charged fields it can never grow.) This makes tree-level

breaking of the R-symmetry in such models impossible, and one has to rely on radiative

corrections.

Consider now the most general O’R model containing only R-charges 0 and 2. Then
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the superpotential can always be brought into the canonical form [332, 274]

W = fX +maiρaσi + λabXρaρb + λ̃iabσiρaρb, (4.2.1)

where R(X) = 2 and ρ, σ are as above. X is the canonical SUSY-breaking pseudomodu-

lus. There can also be other pseudomoduli not associated with SUSY breaking. If these

have R = 0, then we do not care what happens to them radiatively, since they will not

break R-symmetry regardless. Therefore we are free to expand those ρ fields which are

pseudomoduli around their exact vevs.2 On the other hand, any additional R = 2 pseu-

domoduli are potentially important. If they get vevs radiatively then they will break

R-symmetry spontaneously. So our task is to compute the Coleman-Weinberg potential

in this multi-dimensional space and show that the R-symmetric origin is attractive.

There are additional R = 2 pseudomoduli if and only if rank m < N2. Let us single

out those that do not have mass terms and call them Yn, n = 1, . . . , N ′2. We will continue

to denote the massive R = 2 fields with σi, with an obvious reduction in their number.

Then we can rewrite (4.2.1) as

W = fX +maiρaσi + λabXρaρb + λ̃nabYnρaρb + λ̃′iabσiρaρb, (4.2.2)

where m†m is non-singular. Note that mm† could have zero modes, but there are no

tree-level tachyons at the origin. For the purposes of computing the one-loop effective

potential for X and Y , the cubic couplings λ̃′ never contribute, so we will ignore them

henceforth and focus on the simplified superpotential

W = fX +maiρaσi + λabXρaρb + λ̃nabYnρaρb, (4.2.3)

Finally, it is convenient to introduce a pseudomoduli-dependent matrix Nab defined by

Nab = λabX + λ̃nabYn. (4.2.4)
2Radiatively-generated SUSY-breaking tadpoles in the scalar potential will shift the classical vevs for all

the R = 0 fields away from the origin if they are not protected by additional symmetries, but as long as
those corrections are small we need not worry about them.
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Note that N can be taken to be symmetric (but not necessarily real) without loss of gen-

erality. In the next section, we will compute the Coleman-Weinberg one-loop effective

potential for X and Yn that follows from this superpotential.

4.3 Pseudomoduli Masses at 1-Loop

In terms of the tree-level boson and fermion mass matrices, the 1-loop effective potential

[333] is given by

V
(1)
eff =

1

64π2

∑
i=F,B

Tr(−1)FM4
i log

M2
i

Λ2
. (4.3.1)

Following [341], we rewrite this as

V
(1)
eff = − 1

32π2

∫ Λ

0

dv v5 Tr

(
1

v2 +M2
B

− 1

v2 +M2
F

)
. (4.3.2)

The mass matrices that follow from (4.2.2) are (in the basis (ρ, σ, ρ∗, σ∗))

M2
B =

W †
ikW

kj W †
ijkW

k

W ijkW †
k W

ikW †
kj

 = M2
0 +M2

1 +M2
2 + F (4.3.3)

M2
0 =



m∗mT 0 0 0

0 m†m 0 0

0 0 mm† 0

0 0 0 mTm∗


(4.3.4)
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M2
1 =



0 N †m 0 0

m†N 0 0 0

0 0 0 NTm∗

0 0 mTN∗ 0


(4.3.5)

M2
2 =



N †N 0 0 0

0 0 0 0

0 0 NTN∗ 0

0 0 0 0


(4.3.6)

F =



0 0 λ†f 0

0 0 0 0

λf ∗ 0 0 0

0 0 0 0


(4.3.7)

and M2
F is the same but with F → 0. We would like to expand (4.3.2) out to second order

in N . Using (4.3.3)-(4.3.7), we obtain

V
(1)
eff

∣∣∣
N2

=
1

32π2

∫ Λ

0

dv v5 Tr

(
(v2 +M2

0 + F )−2(M2
2 −M2

1 (v2 +M2
0 + F )−1M2

1 )− (f → 0)

)

=
1

16π2

∫ ∞
0

dv v3 Tr

(
(v2 +M2

0 + F )−1

(
M2

2 −
1

2
M2

1 (v2 +M2
0 + F )−1M2

1

)
− (f → 0)

)
(4.3.8)

where in the second line we have integrated by parts. This is the generalization of Eqn.

(2.12) in [341].

Next we expand out (v2 + M2
0 + F )−1 in powers of F , delete the terms that vanish
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under the trace, and resum the series. This results in:

V
(1)
eff

∣∣∣
N2

=
1

16π2

∫ ∞
0

dv v3 Tr

(
F̂ 2

1− F̂ 2

(
M̂2

2 − M̂4
1

))
, (4.3.9)

where the hatted quantities are defined by

F̂ = (v2 +M2
0 )−1/2F (v2 +M2

0 )−1/2, (4.3.10)

M̂2
1,2 = (v2 +M2

0 )−1/2M2
1,2(v2 +M2

0 )−1/2. (4.3.11)

(Since M0 can be singular this may not be well-defined at v = 0, but this does not matter

for the v-integral.) Evaluating the block-matrix multiplication and making use of the fact

that λ, λ̃n are symmetric, this finally becomes

V
(1)
eff

∣∣∣
N2

=
1

8π2

∫ ∞
0

dv v5 Tr

(
λ̂†λ̂

1− λ̂†λ̂
N̂ †N̂

)
, (4.3.12)

where

λ̂ ≡ (v2 +mm†)−1/2λf ∗(v2 +m∗mT )−1/2,

N̂ ≡ (v2 +mm†)−1/2N(v2 +m∗mT )−1/2. (4.3.13)

The absence of tree-level tachyons at the origin implies that mm† is positive-semidefinite.

Therefore (1 − λ̂†λ̂)−1 is positive-semidefinite, which makes the integrand a trace of a

product of positive-semidefinite Hermitian matrices. Hence it is manifestly non-negative

for all X and Yn, making all pseudomoduli masses non-tachyonic at the origin. Gener-

ally, they will have positive mass-squareds; we will examine the case where their mass-

squareds vanish in the next section.

4.4 Vanishing 1-Loop Masses

We have so far shown that the pseudomoduli mass-squareds around the origin are all

non-negative, and thus there is no R-breaking at one-loop in the sense defined before. To
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complete the story we need to discuss the pseudomoduli which are massless at one-loop.

We will show that this is only possible if these pseudomoduli are manifestly decoupled

from SUSY breaking at one-loop order. This shows that there are no possible accidental

cancellations, and all the pseudomoduli that can become massive indeed do so. Pseu-

domoduli which are manifestly decoupled at one-loop can still communicate with SUSY

breaking at two and higher loops, and there are known examples where two-loop effects

trigger spontaneous R-breaking [226, 260, 36]. It would be interesting to say something

general about the two-loop effective potential, but this is beyond the scope of this note.

In terms of the superpotential (4.2.2), what we would like to show is that if some

pseudomodulus direction3, labelled by Nab = λabX0(t) +
∑

n Yn0(t)λ̃nab with t ∈ R, is

massless at one-loop, then ρ and σ can be split into two nearly-decoupled sets of fields

{ρ} → {ρ′, ρ′′}, {σ} → {σ′, σ′′}:

W =
(
fδX + ρ′Tm′σ′ + δXρ′Tλρ′

)
+
(
ρ′′Tm′′σ′′ + ρ′′TNρ′′

)
+ cubic (4.4.1)

These fields only talk to each other through the cubic interactions (which include terms

like σρρ and δY ρρ), and so the pseudomoduli N acquire SUSY-breaking masses only at

two and higher loops.

We will take a constructive approach to deriving (4.4.1). That is, we will start from

the formula for the one-loop pseudomoduli mass-squareds (4.3.12), use this to derive

constraints on λ,N , andm in the superpotential (4.2.2) in the event that the mass-squareds

vanish, and show that these constraints necessarily lead us to the nearly-decoupled form

(4.4.1).

To begin, suppose the mass of some pseudomodulus vanishes at one-loop order. Ac-

3Here we are being careful to distinguish between the pseudomodulus vevs X0, Yn0, and their fluctua-
tions δX ≡ X −X0, δYn ≡ Y − Yn0.
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cording to (4.3.12), this means that

Tr(λ̂†λ̂N̂ †N̂) = 0 (4.4.2)

forN in the background field direction of this zero mode. This in turn can only be satisfied

if

λ̂N̂ † = 0 (4.4.3)

Note that λ̂ and N̂ † are functions of v via (4.3.13), and (4.4.3) must be true for all v. Expand-

ing in 1
v2

yields the following conditions that must be satisfied by the coupling matrices:

λ(m∗mT )kN † = 0 for all k = 0, 1, 2, . . . (4.4.4)

λ is a complex symmetric matrix, so by a unitary rotation of the ρ fields λ → UλUT , we

can always diagonalize it:

λ =

λ′n1×n1
0

0 0

 (4.4.5)

where λ′ is non-singular. The k = 0 version of (4.4.4) implies λN † = 0, so in the basis

where λ takes the form (4.4.5), we can do another unitary rotation on the ρ fields not

coupling to λ′ so that

N =


0n1×n1

0n2×n2

N ′n3×n3

 , (4.4.6)

with N ′ non-singular. n2 could of course be zero.

Having used the k = 0 condition of (4.4.4) to fix the block-form of λ and N , the k > 0

conditions will restrict the formm. Writing the hermitian matrixm∗mT in 3×3 block form

as in (4.4.6), the k > 0 conditions of (4.4.4) imply

((m∗mT )k)13 = 0 for all k = 1, 2, . . . (4.4.7)
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(The 13 subscript refers to the upper-right block of (m∗mT )k.) In the appendix, we prove

the following lemma in linear algebra: when (4.4.7) is satisfied, one can always find a 3×3

block-unitary transformation that puts m∗mT into the form

m∗mT =


[
m∗mT

]′
n4×n4

0

0
[
m∗mT

]′′
n5×n5

 (4.4.8)

with n4 ≥ n1 and n5 ≥ n3. Combining this with (4.4.5) and (4.4.6), we conclude that all the

ρ fields can be separated into two sectors in which λ, N , andm∗mT are block-diagonal. By

a unitary transformation on the σ fields, the same can be done for m itself, and we arrive

at the desired result (4.4.1).
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CHAPTER 5

AVOIDING LIGHT GAUGINO MASS PROBLEM WITH AN UPLIFTED MODEL

Based on the 2011 article “Singlet-Stabilized Minimal Gauge Mediation”, written in

collaboration with David Curtin and published in Phys.Rev. D83 (2011) 075005.
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5.1 Introduction

Supersymmetry (SUSY) is an extremely elegant proposed solution to the hierarchy prob-

lem in the Standard Model (SM). However, the question of how SUSY is broken and

how this breaking is communicated to the Supersymmetric Standard Model (SSM) is far

from settled. Over the years many approaches have been proposed, and one of the most

promising avenues is Gauge Mediation [292, 176, 178, 180, 285, 311, 184, 179, 185]. It auto-

matically solves the SUSY flavor problem, since soft terms are generated by flavor-blind

SM gauge interactions, and has the additional advantage of being calculable in many

cases. The simplest GM models feature a single set of of messengers that are charged

under the SM gauge groups and couple to a SUSY-breaking hidden sector, generating the

SSM soft masses through loop interactions (see [225] for a review). Many generalizations

of this minimal theme exist in the literature (see, for example, [292, 176, 178, 180, 285, 311,

184, 179, 185, 256, 324, 50, 308, 291, 177, 343, 16, 265, 183, 257, 262, 302, 132]). For reasons

of simplicity, models of Direct Gauge Mediation are particularly appealing since they do

not require a separate messenger sector; the SUSY-breaking sector talks directly with the

SSM [256, 324, 50, 308, 291, 177, 343, 16, 265]. By defining General Gauge Mediation as

any SUSY-breaking model where the soft masses vanish as the SM gauge couplings are

taken to zero, it is possible to parametrize the effects of Gauge Mediation in a very model-

independent fashion [302].

Gauge mediation does not answer the question of how SUSY is broken, and a large

variety of SUSY-breaking models can act as its hidden sector. The most desirable scenario

is a hidden sector which breaks supersymmetry dynamically.

Constructing models of dynamical SUSY breaking is extremely difficult, since the ab-

sence of any supersymmetric vacua imposes strong constraints on the theory [356]. Those
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requirements can be relaxed if we allow for the possibility that our universe lives in

a long-lived meta-stable SUSY-breaking vacuum, and Intriligator, Seiberg and Shih (ISS)

generated enormous interest in 2006 when they demonstrated that such scenarios are

fairly generic by showing that simple SUSY QCD with light quark masses can have

metastable SUSY-breaking vacua near the origin of field space [262]. While the ISS model

is not a fully dynamical model in the strict sense (the small quark mass must be inserted

by hand), it does break SUSY non-perturbatively from the point of view of the UV theory

and is under full calculational control using the Seiberg Duality [336]. This, in addition to

its sheer simplicity, makes it an extremely attractive model-building arena for exploring

SUSY-breaking and Direct Gauge Mediation, and several attempts were made to incorpo-

rate it into phenomenologically realistic models [183, 272, 243, 228, 194, 12, 160].

The meta-stable ground state of the unmodified ISS model has an unbroken (approxi-

mate) R-symmetry that forbids gaugino masses. Breaking that symmetry spontaneously

generates gaugino masses that are at least a factor of ∼ 10 lighter than the sfermion

masses. This is actually a generic feature of many Direct Gauge Mediation models, and

the resulting split-SUSY-type spectrum is phenomenologically very undesirable since it

exacerbates the little hierarchy problem. Explicit breaking [272, 243, 228, 194] can generate

larger masses but creates new SUSY vacua and often creates a tension between reasonably

large gaugino masses and stability of the ISS vacuum.

Recent work by Komargodski and Shih [274] sheds light on the issue. It was shown

that the leading-order gaugino mass vanishes if the SUSY-breaking vacuum is stable

within the renormalizable theory. This applies to unmodified ISS, where in the magnetic

theory the SUSY-vacua only show up far out in field space through non-perturbative

effects. The first example of a sufficiently destabilized ISS model was [272], and an

existence-proof of an ‘uplifted’ model that is stabilized on a higher branch of the pseu-
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domoduli space of massive SQCD was presented in [227], with later variations by

[298, 280, 64, 72].

This brings us to the motivation for this paper. As is evident from the above discus-

sion, there exists a large variety of ISS-based models of direct gauge mediation, uplifted

or not. However, most of them share several shortcomings:

1. Landau pole in the SM gauge couplings below the GUT-scale due to (sometimes

very large amount of) excess matter in the hidden sector.

2. The addition of nongeneric or seemingly contrived couplings and deformations,

which often break global symmetries. Often there is also an unexplained partial

breaking of the hidden sector flavor symmetry, both to stabilize the vacuum and to

embed the SM gauge group.

3. Often severe fine-tuning to stabilize the vacuum.

Putting aside the fine-tuning problem for the moment, we would like to address the first

two issues. We construct a Direct Gauge Mediation model with an absolutely minimal

SQCD sector which has no Landau Pole, no flavor symmetry breaking and (depending

on one’s judgement) no contrived deformations/couplings. The price we pay for this sim-

plicity is the addition of the singlet sector proposed by [183]. We call this model Singlet-

Stabilized Minimal Gauge Mediation. Our UV theory will be SU(4)C × SU(5)F s-confining

SQCD [337, 258] with a single quark mass scale. The IR theory has trivial gauge group

and the standard model gauge group is identified with the SU(5)F . There are two pseu-

domoduli spaces, the ISS branch with an SU(4) flavor symmetry and a single uplifted

branch with unbroken SU(5). The vacuum is stabilized on the uplifted branch by the

singlet sector. The spectrum of soft masses is precisely that of Minimal Gauge Mediation,

the best possible solution from the point of view of the gaugino mass problem.
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We also address an issue that may have not been explicitly discussed in the past: sta-

bilizing an uplifted branch of massive SQCD requires two stabilization mechanisms: one

each for the adjoint and singlet components of the meson. This makes it extremely hard

to avoid some meson deformations.

This paper is laid out somewhat hierarchically. In Section 5.2 we outline the construc-

tion of our model and summarize all of the important results. Each summary refers to

one of the later sections for details, but the essence of our work is contained in this short

overview. The later chapters are organized as follows. A self-contained review of the ISS

framework and related model building development is given in Section 5.3. Based on

the need for two stabilization mechanisms we derive some guidelines for building up-

lifted ISS models in Section 5.4. We then move on to slightly more detailed discussions

of the overall vacuum structure and spectrum (Section 5.5), implementation of Direct

Gauge Mediation to get ISS-based model of Minimal Gauge Mediation (Section 5.6) and

the mechanism of stabilizing the uplifted vacuum (Section 5.7). We conclude with Section

5.8.

5.2 Overview of the SSMGM Model

We would like to build a model of direct gauge mediation based on the ISS model [262]

that avoids both light gauginos and Landau Poles. A review of the ISS framework for

metastable SUSY braking and direct gauge mediation can be found in section Section 5.3. In this

section we summarize the highlights of our model and its main physical consequences,

while the details of the analysis are deferred to Sections 5.4 - 5.7.

In this paper, we construct the smallest possible ISS model stabilized on the high-
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est possible pseudomoduli space to ensure that all messengers contribute to the gaugino

mass (i.e. we get Minimal Gauge Mediation). This model has no Landau Pole due to

minimal excess matter and no flavor breaking. The uplifted vacuum is stabilized via a

separate singlet sector, so we call this setup Singlet-Stabilized Minimal Gauge Mediation

(SSMGM).

Constructing the Magnetic Theory

We want a trivial low-energy gauge group and an SU(Nf ) = SU(5) flavor symmetry.

This means the electric theory must be s-confining [337, 258], and strictly speaking it is

inaccurate to speak of a magnetic theory – at low energies we use a confined description,

where the fundamental degrees of freedom are just the baryons and mesons of the original

theory. However, s-confining SQCD displays similar metastable SUSY-breaking behavior

as free magnetic SQCD, so in the interest of using familiar ISS-terminology we shall refer

to the confined description as ‘magnetic’ and the baryons as ‘magnetic squarks’.

For this choice of electric theory, pseudomoduli space of the magnetic theory only has

two branches: the ISS vacuum corresponding to k = 1 (i.e. the magnetic squarks get a

VEV) and an uplifted branch corresponding to k = 0 (i.e. no squarks get a VEV). If we

could stabilize the uplifted branch we can identify the SM gauge group with the unbroken

SU(5) flavor group. The squarks would then act as a pair of Minimal Gauge Mediation

messengers and generate gaugino masses at leading order in SUSY-breaking. The authors

of [227] have shown that meson deformations alone cannot achieve this stabilizations for

such a small flavor group. Therefore, the price we pay for the pleasing minimality in

the SQCD sector is the addition of a singlet sector with its own U(1) gauge group, which

spontaneously breaks the U(1)R symmetry by the inverted hierarchy mechanism [355]
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and stabilizes the uplifted vacuum.

In the magnetic description of the ISS model, the field content is

SQCD sector

singlet sector

SU(Nf ) U(1)B U(1)R U(1)S

φi 1 0 0

φ̄j −1 0 0

M Adj + 1 0 2 0

S 1 0 0 1

S 1 0 0 −1

Z 1 0 2 1

Z 1 0 2 −1

(5.2.1)

where U(1)S is the gauge group of the singlet sector with coupling g. The complete su-

perpotential is

W = hφ̄iM
i
jφ

j + (−hf 2 + dSS̄)TrM +m′(ZS̄ + SZ̄)− a detM

|Λ|Nf−3
+madjTr(M ′2), (5.2.2)

where a, h are unknown positive O(1) numbers and f,m′ are mass scales (which can be

complex) much smaller than Λ. The instanton term breaks the approximate U(1)R sym-

metry and restores SUSY for large meson VEVs. To explain the last term, decompose

the meson into singlet and adjoint components M = Msing + Madj . The M ′ denotes the

traceless part of the meson, meaning the deformation only gives a mass to Madj . This is

necessary because the singlet sector couples to Msing and stabilizes it away from the ori-

gin, but Madj is tachyonic at the origin in the uplifted pseudomoduli space. Therefore,

unfortunately, we must give it a mass by hand – this is a general feature of uplifted ISS

models. For the derivation of this model-building requirement, please refer to Section 5.4.
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The Corresponding Electric Theory & Scales of the Model

The electric description is an augmented massive s-confining SQCD with gauge group

SU(Nf − 1) = SU(4) and superpotential

W =

(
f̃ +

d̃

ΛUV

SS̄

)
TrQQ̄+m′(ZS̄ + SZ̄) +

ã

ΛUV

Tr
(
QQ̄
)′2
, (5.2.3)

where ã is assumed to be someO(1) number. We make no attempt at explaining the origin

of the small quark mass term (see [160] for example). ΛUV > Λ is the scale of some UV-

physics which generates the non-renormalizable SSQQ, QQQQ terms. The natural sizes

of the IR parameters are therefore

d ∼ Λ

ΛUV

, h ∼ 1 madj ∼
Λ2

ΛUV

∼ dΛ. (5.2.4)

To protect the Seiberg Duality transition from the physics at scale ΛUV , we conserva-

tively require ΛUV ∼> 100Λ. The masses f and m′ are free parameters as long as they are

both smaller than ∼ Λ/100.

A natural choice for ΛUV would be either the GUT-scale or the Planck-scale, with Λ at

least two orders of magnitude below that. However, we show in Section 5.7.2 that if Λ

is much smaller than ∼ ΛUV /100 the coupling between the singlet sector and the SQCD

sector is too weak to stabilize the magnetic meson against the effect of the instanton term,

which wants to push the meson towards a supersymmetric vacuum far out in field space.

This effectively locks the Λ/ΛUV to be ∼ 10−2. The two plausible scenarios are then

Λ ΛUV

Scenario 1 1016 1018

Scenario 2 1014 1016
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(all masses in GeV), setting d ∼ 0.01.

The Uplifted Vacuum

Ignoring the instanton term near the origin, FM is given by

− F ∗M i
j

= hφ̄iφ
j − (hf 2 − dSS̄)δji . (5.2.5)

Since the first term has maximal rank 1 and the second term has maximal rank 5, some

F -terms must be nonzero, breaking SUSY by the rank condition. We want to live in the

uplifted vacuum, so we set 〈φφ〉 = 0. The singlets then obtain nonzero VEV whenever

r =
√
Nfhd f/m

′ > 1, in which case FZ , FZ 6= 0 so the singlets participate in the SUSY-

breaking. Some of the φ, φ are tachyonic for

〈|Msing|〉 <
m′√
hd
, (5.2.6)

but 1-loop corrections from the messengers and the singlet sector give the meson a VEV

at

〈|Msing|〉 ∼
√
h

d
f, (5.2.7)

which is large enough to stabilize the messengers and give a viable uplifted vacuum. A

complete discussion of the vacuum structure and spectrum is given in Section 5.5.

Implementing Direct Gauge Mediation

If we identify the SU(5) flavor group with the SM GUT gauge group and live in the

uplifted vacuum, we obtain a model of direct gauge mediation with a single pair of (5+5)

messengers φ, φ. Since the messengers are tachyonic for small VEVs of the meson M

they generate gaugino masses at lowest order in SUSY-breaking – in fact, this is just an
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uplifted-ISS implementation of standard Minimal Gauge Mediation. There is no Landau

pole, and the singlet degrees of freedom are all heavier than the messengers (except for

the pseudomodulus, goldstino and R-axion). See Section 5.6 for details.

Stabilizing the Uplifted Vacuum

The one-loop potential from the messengers tries to push the pseudomodulus (and hence

the meson) towards the origin where the messengers are tachyonic, while the singlet sec-

tor contribution pushes it away from the origin. To cancel these competing contributions

and create a local minimum it is necessary to adjust the ratiom′/f to a precision of roughly

∆ ∼
(

Λ

ΛUV

)2

, (5.2.8)

which is ∼ 10−4 in our two scenarios. The tuning could be significantly reduced if one

were less conservative about the separation of the two scales Λ,ΛUV .

In our scenarios the smallness of d compared to the other couplings raises the question

of whether a one-loop analysis can be trusted. We show that two-loop corrections involv-

ing the larger couplings do not invalidate our analysis, because they neither influence

the non-trivial part of the effective potential which generates the minimum, nor make it

impossible to cancel the other smooth contributions to high enough precision so that this

interesting part survives. Therefore, the meson can always be stabilized away from the

origin.

Finally one must check that decays of the uplifted vacuum to both the ISS and the

SUSY vacuum are suppressed enough to make the lifetime longer than the age of the

universe. This is indeed the case for our model, since the bounce actions for decay to the

ISS and SUSY vacua are enhanced by (ΛUV /Λ)2 and
√

Λ/f respectively.
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See Section 5.7 for a detailed discussion on stabilization of the uplifted vacuum, the effect of

two-loop corrections and calculation of the vacuum lifetime.

5.3 Reviewing the ISS Framework

This section provides a brief summary of the ISS framework and related model building

developments which form the basis of this paper. After outlining the general need for

metastable SUSY-breaking in gauge mediation we review the original ISS model as well

as its more recent uplifted incarnations.

5.3.1 The necessity of metastable SUSY-breaking

The reasons for pursuing theories of meta-stable SUSY-breaking go beyond the significant

model-building simplifications they potentially afford.

One possible argument goes as follows: A generic theory that breaks SUSY in its

ground state must have an R-symmetry (see e.g. [259] for a review). Since this for-

bids gaugino masses the R-symmetry must be broken. If the R-symmetry is only spon-

taneously broken one might think that the massless R-axion causes cosmological and

astrophysical problems, necessitating explicit R-breaking. By the Nelson-Seiberg theo-

rem [313], this causes supersymmetric vacua to come in from infinity, making the SUSY-

breaking vacuum metastable. However, [66] show that supergravity effects give the R-

axion a mass, provided that the cosmological constant is tuned away, even ifR-symmetry

is merely spontaneously broken in the global SUSY theory. Therefore, avoiding a mass-

less R-axion is not a reason for metastable SUSY-breaking. (It is still possible that the
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R-breaking effects of gravity do in fact destabilize the SUSY-breaking vacuum, but it is

not known whether the Nelson-Seiberg theorem applies in this case.)1

Within the framework of Direct Gauge Mediation there is, however, another very good

reason for believing in meta-stable SUSY-breaking. As first noticed in [265], many mod-

els of Direct Gauge Mediation suffer from very small gaugino masses compared to the

sfermions. This resuls in a split-SUSY-type spectrum which reintroduces fine tuning

into the Higgs Sector. Komargodski and Shih [274] explored this issue in a relatively

model-independent way by examining generalized O’Raifeartaigh models (renormaliz-

able Wess-Zumino models which break supersymmetry and have canonical Kahler po-

tentials)2. These theories form the low-energy effective description for the hidden sector

of many direct gauge mediation scenarios.

Any generalized O’Raifeartaigh model features tree-level flat directions called pseu-

domoduli emanating from the SUSY-breaking vacuum. The pseudomodulus is the su-

perpartner of the Goldstino, and is stabilized somewhere on the pseudomoduli space by

quantum corrections. One can always write the model in the form

W = fX + (λX +m)ijψ
iψj +O(ψ3) (5.3.1)

where the scalar part of X is the pseudomodulus. If we take the ψ’s to come in 5 + 5̄ pairs

of SU(5) then this is an example of Extra-Ordinary Gauge Mediation [132]. To leading

order in the SUSY-breaking parameter F/X2, the gaugino mass is given by

mλ ∝ f
∂

∂X
log det(λX +m)messengers. (5.3.2)

One can show that if there are no tachyons for any choice of X (i.e. the pseudomoduli

space is locally stable everywhere), then det(λX + m) = detm. Therefore, if the pseu-
1We thank Zohar Komargodski and Jesse Thaler for pointing this out to us.
2[342] and [310] extend this discussion to semi-Direct Gauge Mediation and models with non-canonical

Kahler terms, respectively.

137



domoduli space is stable everywhere, the gaugino masses vanish at leading order. Since

sfermion masses are created at leading order, we have a split-SUSY spectrum.

This shows that in models of Direct Gauge Mediation, the problem of the anomalously

small gaugino mass is related to the vacuum structure of the theory. In order to have a

gaugino mass at leading order in SUSY-breaking, it is necessary to live in a metastable

vacuum from which lower-lying vacua (SUSY-breaking or not) are accessible within the

renormalizable theory. SUSY-vacua created by non-perturbative effects far out in field

space do not generate a large gaugino mass. (Notice that Minimal Gauge Mediation cor-

responds to m = 0 and a single messenger pair, so the messengers are tachyonic for

X2 < F and large gaugino masses are generated.)

Since the gaugino mass formula eq. (5.3.2) is only valid to lowest order in F/X2 one

might think that sizeable gaugino masses could be generated for large SUSY-breaking.

We conducted a small study within the framework of Extra-Ordinary Gauge Mediation

using both analytical and numerical techniques, and like many before us [225, 294], we

conclude that the gaugino-to-sfermion mass ratio mλ/mf̃ can not be tuned to be larger

than ∼ 1/10 due to a curious numerical suppression of the subleading terms.

5.3.2 The ISS Model

The authors of [262] considered UV-free SQCD with an SU(Nc) gauge group and Nf fla-

vors of electric quarks with a small mass term

W = mQiQ̄i (5.3.3)

where m� Λ, denoting Λ as the strong coupling scale of the theory. In the free magnetic

phase Nc < Nf <
3
2
Nc, the low-energy theory can be studied using Seiberg Duality [336]
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and is simply IR-free SQCD with an SU(Nf −Nc) gauge group, a gauge singlet meson Φ

and Nf flavors of magnetic quarks q, q̄, as well as a Landau Pole at scale Λm.

Writing N = Nf −Nc <
1
3
Nf , the symmetries of the IR theory are [SU(N)]×SU(Nf )×

U(1)B × U(1)R (gauged symmetries in square brackets)3. The fields have charges Φ:

(1,Adj + 1)0,2, q: (N, N̄f )1,0 and q̄: (N̄ ,Nf )−1,0. The Kahler terms of the low-energy ef-

fective degrees of freedom are canonical and the superpotential is

W = hqai Φ
i
j q̄
j
a − hµ2Φi

i (5.3.4)

where a, b, . . . are gauge indices and i, j, . . . are flavor indices and µ ∼
√

Λm.

The Φ F-terms are

− F ∗Φij = hqai q̄
j
a − hµ2δij. (5.3.5)

They cannot all be zero, since the first term has rank at most N and the second term has

rank Nf ≥ 3N , so supersymmetry is broken by the rank condition. Expanding around the

vacuum, the fields can be written as

Φ =

NNF−NV Y

Y Z

 N

NF−N

q =
N NF−N(
µ+ χ1 ρ1

)
N

q =

Nµ+ χ1

ρ1

 N

NF−N

(5.3.6)

with matrix dimensions indicated. (Writing the squark fields with a subscript 1 will be

useful for comparison to the uplifted ISS case.) The gauge symmetry is completely hig-

gsed by the squark VEVs, and the surviving global symmetry is SU(N)diag × SU(Nf −

N)× U(1)B′ × U(1)R. The spectrum divides into distinct sectors. (We take µ to be real for

simplicity, and prime denotes traceless part.)

3We emphasize that this U(1)R symmetry is anomalous under magnetic gauge interactions, which leads
to the non-perturbative restoration of supersymmetry discussed below.
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1. V and (χ1 + χ̄1) get mass ∼ |hµ| whereas (χ1 − χ̄1)′ gets eaten by the magnetic

gauge supermultiplet via the superHiggs mechanism. This part of the spectrum is

supersymmetric at tree-level.

2. Tr(χ1 − χ̄1): the fermion is massless at tree level and the real part of the scalar is a

classically flat direction (a pseudomodulus) which gets stabilized at zero. Both these

fields obtain a mass at loop-level. The imaginary part of the scalar is the Goldstone

boson of a broken U(1) symmetry (a mixture of U(1)B and a diagonal SU(Nf ) gen-

erator) and is massless to all orders. This part of the spectrum can be made massive

by gauging the U(1) symmetry.

3. Z is another pseudomodulus which gets stabilized at the origin and obtains a loop-

suppressed mass.

4. Y, Ȳ , Im(ρ1 + ρ̄1),Re(ρ1− ρ̄1) get masses∼ |hµ|. Re(ρ1 + ρ̄1), Im(ρ1− ρ̄1) are goldstone

bosons of the broken flavor symmetry and massless

In the original ISS model as it is defined above, both pseudomoduli are stabilized at

the origin by quantum corrections and get a loop-suppressed mass. This leaves the R-

symmetry unbroken and forbids gaugino masses, so for use in realistic scenarios of direct

gauge mediation the ISS model must be modified somehow to break R-symmetry.

In the magnetic theory supersymmetry is restored non-perturbatively: for large Φ the

squarks get a large mass and can be integrated out, leaving a pure SYM theory which

undergoes gaugino condensation and has SUSY-vacua at

〈q〉 = 0, 〈q̄〉 = 0, 〈Φ〉SUSY = Λm

(
µ

Λm

)2N/Nf−N

1. (5.3.7)

This makes the SUSY-breaking vacuum at the orgin meta-stable, but the smallness of the

ratio µ/Λm guarantees that the false vacuum is parametrically long-lived.
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We can understand this metastability in terms of the connection between R-symmetry

and SUSY-breaking. The UV theory does not have an exact R-symmetry, but it emerges

as an accidental symmetry near the origin of the IR theory. That U(1)R is anomalous under

gauge interactions and hence SUSY is restored by non-perturbative operators far out in

field space. The ’smallness’ of the explicit R-breaking near the origin guarantees that the

SUSY-breaking vacuum is long-lived.

Since it will be of special interest to us later we should make a comment about the s-

confining case of Nf = Nc + 1 [337, 258]. The magnetic gauge group is trivial, but SUSY is

still restored far out in field space. This is due to the slightly modified dual superpotential,

which includes what looks like an instanton term:

W = hTrqΦq̄ − hTrµ2Φi
i + c

1

ΛNf−3
det Φ. (5.3.8)

Modifying the ISS model for Direct Gauge Mediation

The ISS model looks like a promising framework for models of Direct Gauge Media-

tion. For example, one could gauge the unbroken SU(Nf − N) flavor symmetry and

embed the SM gauge group, which would give gauge charges to the (anti-)fundamentals

ρ1, ρ̄1, Y, Ȳ and make them Extra-Ordinary Gauge Mediation [132] messengers, as well

as the Adjoint + Singlet Z. The main obstacle to such a construction is the unbroken R-

symmetry in the original ISS model. (Many variations which break U(1)R spontaneously

or explicitly have been proposed, and this discussion is not meant to be exhaustive.) Mod-

els with meson deformations [272, 243, 228, 194] add operators of the form ∼ 1
ΛUV

QQ̄QQ̄

in the UV theory which gives operators ∼ Φ2 in the IR theory with suppressed coeffi-

cients. This explicitly breaks the R-symmetry and gives the singlet component of the

meson a VEV, generating a gaugino mass. These deformations also make the (shifted) ISS-
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vacuum more unstable because new SUSY-vacua are introduced. This is per se desirable,

since a nonzero gaugino mass at leading order in SUSY-breaking requires the existence

of lower-lying vacua within the renormalizable theory, however there is a strong tension

between making the gaugino mass somewhat comparable to the sfermion mass and mak-

ing the vacuum too unstable. Another possibility is adding a baryon deformation to the

superpotential, which in the example of [12] involves adding a Λ2
UV -suppressed opera-

tor in the UV theory and breaking R-symmetry spontaneously, generating a very small

gaugino mass. A third possibility is the addition of a singlet-sector with its own U(1)

gauge symmetry to break R-symmetry spontaneously [160, 183] via the Inverted Hierar-

chy Mechanism [355]. This again gives a small gaugino mass, and the parameters have to

be fine-tuned to stabilize the vacuum.

A common problem with these embeddings is the existence of a Landau Pole, primar-

ily due to the existence of the SM-charged adjoint meson, and some of them also feature

non-generic couplings or deformations with somewhat non-trivial flavor contractions.

5.3.3 Uplifting the ISS Model

It would be desirable to obtain a large gaugino mass in a direct gauge mediation model

derived from massive SQCD (mSQCD). Adding meson deformations introduces new

vacua and generates a gaugino mass at leading order, but the strong tension between sta-

bility and sizeable gaugino masses motivates the search for a different kind of metasta-

bility: finding a new stable vacuum in a higher branch of the pseudomoduli space of

mSQCD (‘uplifting’ the vacuum). This possibility was first realized by Giveon, Katz and

Komargodski [227], and we will sketch out their results below.
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We start with the same UV theory as the standard ISS model eq. (5.3.3). In the ISS

vacuum, the squark VEV matrix has rank〈qq̄〉 = N . However, there are higher, unstable

pseudomoduli spaces with rank〈qq̄〉 = k, with k = 0, 1, 2, . . . N − 1. If we assume the

squark VEV matrix has rank k < N the surviving symmetry is [SU(N − k)] × SU(k)D ×

SU(Nf−k)×U(1)B′×U(1)B′′ . (As we will see we must assume that the meson is stabilized

at a nonzero value, breaking the U(1)R symmetry.) We expand around the squark VEV

and split the fields into representations of the unbroken symmetries:

Φ =

kNF−kV Y

Y Z

 k

NF−k

q =

k NF−kµ+ χ1 ρ1

χ2 ρ2

 k

N−k

q =

k N−kµ+ χ1 χ2

ρ1 ρ2

 k

NF−k

(5.3.9)

The spectrum can again be described in terms of a few separate sectors:

1. (χ2 ± χ̄2), (χ1 − χ̄1) get eaten by the massive gauge supermultiplets. Notice how

Tr(χ1 − χ̄1) is no longer massless at tree-level because the broken U(1) is a mixture

between a gauged diagonal generator and the U(1)B.

2. V , (χ1 + χ̄1) get F -term mass ∼ |hµ|

3. The Y, ρ, Z-type fields can be analyzed separately. The (Y, Ȳ , ρ1, ρ̄1) fields obtain Z-

dependent masses and contain 2k(Nf − k) flavor goldstone bosons. In a scenario of

Extra-Ordinary Gauge Mediation, these fields constitute messengers that are stable

for all Z and hence do not contribute to the gaugino mass. The (ρ2, ρ̄2) scalars are

tachyonic for |Z| < |µ|, as we would expect from living on an uplifted pseudomod-

uli space, but if Z can be stabilized at a large-enough value they too are stable and

act as messengers which do contribute to the gaugino mass at leading order.

The model-building quest is now to break R-symmetry and stabilize the Z at a large
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enough value to ensure that all scalars are non-tachyonic. The authors of [227] show that

in a renormalizable Wess-Zumino model, no stable SUSY-breaking minimum exists for

VEVs much above the highest mass scale of the theory. Hence stabilizing Z > µ is not

feasible in the original model. They circumvent this problem by introducing a mass hierar-

chy into the quark masses, with the first k flavors having mass µ1 and the remainingNf−k

flavors having a much smaller mass µ2. This means that the ρ2, ρ̄2 fields are tachyonic for

Z < µ2 � µ1, so stabilizing the meson VEV in the region µ2 < Z < µ1 is possible. They

achieve this stabilization for large flavor groups and k close to N by adding finely-tuned

meson deformations Tr(Z2), (TrZ)2. This model is a very important proof-of-principle

and it does achieve sizeable gaugino masses as desired, but its drawbacks (Landau pole

& non-minimal hidden sector, imposed flavor-breaking mass hierarchies and meson de-

formations) motivated further research into stabilizing an uplifted ISS model.

Further Developments in Stabilizing Uplifted ISS

There have since been other attempts at stabilizing the uplifted ISS model. [280] exam-

ined the equivalent case for SO(10)-unified Direct Gauge Mediation, [298] considered

stabilization using SUGRA, and issues of cosmological vacuum selection were discussed

in [64]. Stabilization of an uplifted ISS model via baryon deformations was investigated

in [72], and while a stable vacuum can be achieved this way for much smaller flavor

groups than the proof-of-principle case discussed above, that model also features many

non-renormalizable operators with non-trivial flavor contractions and non-generic cou-

plings, as well as an explicit breaking of the hidden sector flavor symmetry. It is in this

context that we are motivated to construct an uplifted ISS model with a minimal hidden

sector.
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5.4 The Adjoint Instability

Before introducing our minimal uplifted ISS model in the next section we examine the

general requirements for stabilizing a higher pseudomoduli space of massive SQCD

(mSQCD). We emphasize a hitherto neglected point: there must actually be two stabiliza-

tion mechanisms, one for the singlet and one for the adjoint component of the SU(Nf −k)

mesonZ. This in turn yields to some very general requirements on model building, which

suggest that single-trace meson deformations are very hard to avoid in uplifted ISS mod-

els.

5.4.1 The messenger contribution to Veff(Z)

Let us examine an uplifted pseudomoduli space in the unmodified ISS model. (We will

later add some structure to stabilize it.) The SU(Nf − k) meson Z is a pseudomodulus

which is flat at tree-level. The leading contribution to its potential arises from one-loop

corrections to the vacuum energy and can be computed using the Coleman-Weinberg

formula

VCW =
1

64π2
STrM4 log

M2

Λ2
m

(5.4.1)

where Λm is the cutoff of the magnetic theory. Since the tree-level spectrum of the mag-

netic gauge vector multiplet is supersymmetric it does not contribute at one-loop level,

and by inspecting the superpotential it is clear that the masses of V, (χ1 + χ̄1) do not

depend on Z at tree-level. Therefore, we only need to consider the dependence of the

ρ, Y -type spectrum on Z to determine its 1-loop potential. The relevant part of the super-

potential is
1

h
WZ = −µ2

2Z
i
i + ρ2jZ

j
i ρ̄

i
2 + ρ1jZ

j
i ρ̄

i
1 + µ1(ρ1iȲ

i + Yiρ̄
i
1) (5.4.2)
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where i, j are SU(Nf − k) flavor indices and we hide the trivial color contractions. We

have also implemented the flavor-breaking of [227] for generality.

Since VCW due to messengers is generated by single planar Z-loops, it can only depend

on single-trace combinations of the form Tr[(ZZ†)n]. Furthermore, even if 〈Z〉 breaks the

flavor symmetry, we can use broken SU(Nf − k) generators to diagonalize 〈Z〉. Therefore

it is justified to diagonalize Z and treat the diagonal components separately. It is then

easy to verify that V mess
CW slopes towards the region where ρ2, ρ̄2 become tachyonic.

It is instructive to phrase this familiar argument in a slightly different way. Decompose

the meson Z into adjoint and singlet components:

Zi
j = ZA

adjT
Ai

j + ZsingTS (5.4.3)

where TA are the usual SU(NF − k)-generators with a slightly modified canonical nor-

malization due to the Z being a complex scalar: TrTATB = δAB, TS = 1√
NF−k

1. Our basic

dynamical degrees of freedom are then the (Nf−k)2−1 complex fields ZA
adj and the flavor

singlet complex field Zsing.

We can do a flavor transformation and push all the VEV of the adjoint into one of the

diagonal generators. Call this generator T̃adj and the associated meson component Z̃adj .

Then

〈Z〉 = 〈Z̃adj〉T̃adj + 〈Zsing〉TS (5.4.4)

ReplacingZ → Z̃adjT̃adj+ZsingTS in Tr[(ZZ†)n] we can see that the expression is symmetric

under exchange of Z̃adj and Zsing, since the generators satisfy TrTST̃adj = 0 and TrT 2 =

1. The single-trace condition is therefore equivalent to saying that the adjoint and the singlet

components make identical contributions to VCW. Hence the behavior of V mess
CW is dictated by

its dependence on the singlet component.
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5.4.2 Model Building Requirements for Stabilizing Z

This reasoning shows that uplifted ISS models really need two stabilization mechanisms:

(i) Zsing must be stabilized at a nonzero VEV large enough to make the messengers non-

tachyonic, and (ii) Zadj must be stabilized at zero VEV. If the effective potential is a single-

trace object then both requirements are automatically satisfied. However, if only the sin-

glet is stabilized (separately from the adjoint) then the vacuum will be unstable along the

Zadj direction and the fields roll towards the lower-lying ISS vacuum. We call this phe-

nomenon the Adjoint Instability, and it has direct model building implications. Stabilizing

the adjoint in an uplifted vacuum can be done in two ways.

1. Add an additional flavor adjoint. This would allow us to give Zadj a mass (either at

tree-level or, more indirectly, at 1-loop).

2. Alternatively, to obtain an effective Z2
adj term we can do one of the following:

(a) Break R-symmetry explicitly by adding meson deformations like (TrZ)2,Tr(Z2).

(b) Break R-symmetry spontaneously, e.g. by introducing a field A with R-charge

−2 which somehow gets a VEV and gives a mass to the adjoint via the coupling

W ⊃ AMM .

Adding a flavor adjoint would greatly exacerbate the Landau Pole Problem, and Option

2 (b) is not very attractive because the corresponding operators in the UV would be even

more non-renormalizable than meson deformations. (Not to mention the additional ma-

chinery required to give A its VEV.) 2 (a) seems like the best solution.

This was also the path taken by the authors of [227]. They stabilize the vacuum by

effectively adding a single-trace deformation Tr(Z2). This deformation treats the singlet

and the adjoint equally, and therefore stabilizing the singlet also stabilizes the adjoint. To
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lift the mass of Zadj and avoid a Landau Pole below Λm without destabilizing the nonzero

singlet VEV they must then add another single-trace deformation Tr(Z2
adj). [72] must also

include a single-trace meson deformation to stabilize the meson.

This leads us to conclude that meson deformations ∼ 1
ΛUV

QQ̄QQ̄ are extremely hard

to avoid in mSQCD models with meta-stable SUSY-breaking vacua on uplifted pseudo-

moduli spaces.

5.5 Vacuum Structure & Spectrum

Near the origin of field space there are two branches of the pseudomoduli space for this

model. One is the ISS vacuum, where k = rank〈φ̄φ〉 = 1 and the flavor symmetry is

broken down to SU(Nf − 1). The other is the uplifted vacuum where k = rank〈φ̄φ〉 = 0,

i.e. no squark VEV. To solve the gaugino mass problem we must stabilize the uplifted

vacuum. Before we can analyze that stabilization, we must understand the structure of

the vacuum manifold at tree-level.

5.5.1 The Uplifted Vacuum (k = 0)

We want to live in this uplifted vacuum without squark VEVs to solve the gaugino mass

problem. With the meson decomposed into singlet and adjoint components, the superpo-
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tential is

W = hTrφ̄Madjφ+madjTr(M2
adj)

+

[
hTrφ̄φ√
Nf

+
√
Nf

(
−hf 2 + dSS̄

)]
Msing +m′(ZS̄ + SZ̄)

− a

N
Nf/2

f

M
Nf
sing

|Λ|Nf−3
+ . . . (5.5.1)

where we have omitted Λ-suppressed interactions of Madj . For simplicity, let f , m′ and Λ

as well as a, h be real and positive throughout this analysis. For now we simply assume

that the singlet sector stabilizes Msing at large enough VEV to make the messengers non-

tachyonic, and we postpone the detailed discussion of stabilizing the uplifted vacuum to

Section 5.7.

Tree-level VEVs near origin of field space

Close to the origin of field space we can ignore the instanton term in determining the

VEVs of the fields. For 〈Mad〉 = 0 and 〈φ̄φ〉 = 0 we then only need to analyze the second

line of eq. (5.5.1) and the tree-level potential for the singlet scalar VEVs becomes

Vtree →
1

2
g2
(
|S|2 + |Z|2 − |S̄|2 − |Z̄|2

)
+
∣∣∣d√NfMsingS +m′Z

∣∣∣2 +
∣∣∣d√NfMsingS̄ +m′Z̄

∣∣∣2
+Nf

∣∣dSS̄ − hf 2
∣∣2 + |m′S|2 +

∣∣m′S̄∣∣2 (5.5.2)

The first line is the D-term potential for the singlet U(1)S gauge group, and can be set to

zero by imposing |S| = |S̄|, |Z| = |Z̄|. The FS,S̄-terms in the second line vanish for

〈Z〉 = −d
√
Nf
〈MsingS〉

m′
, 〈Z̄〉 = −d

√
Nf
〈MsingS̄〉

m′
. (5.5.3)

This leaves the last line as the potential for S, S̄, which implies

〈SS̄〉 =
hf 2

d
− m′2

d2Nf

whenever r > 1 where r =
√
Nfhd

f

m′
. (5.5.4)
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(Often it is convenient to parametrize f in terms of r, as we will see below.) We will

assume that this condition is satisfied so that the singlets get a VEV and break the U(1)S

gauge symmetry, which in turn can lead to spontaneous R-symmetry breaking via the

inverted hierarchy mechanism. The only nonzero F-terms are

〈FMsing
〉 = − m′2

d
√
Nf

, 〈FZ,Z̄〉 =
m′2

d
√
Nf

√
hf 2dNf

m′2
− 1, (5.5.5)

and the total vacuum energy is

〈V k=0
0 〉 = 2hf 2m

′2

d
− m′4

d2Nf

(5.5.6)

To be precise we decompose all the complex scalar singlets into amplitudes and

phases:

S = σSe
i
πS
〈σS〉 , Z = σZe

i
πZ
〈σZ〉 , Msing = σMsing

e
i
πMsing
〈σMsing 〉 , etc. (5.5.7)

This reveals that of the 5 phases, three are fixed at tree-level whereas the other two are the

U(1)S Nambu-Goldstone boson and the R-axion

πR =
1

Ftot

(
|FMsing

|ππsing + |FZ |πZ + |FZ̄ |πZ̄
)
∝ 〈σMsing

〉πMsing
+ 〈σZ〉πZ + 〈σZ̄〉πZ̄ (5.5.8)

respectively. Of the 5 amplitudes, one combination

σPM =
1

Ftot

(
|FMsing

|σMsing
+ |FZ |σZ + |FZ̄ |σZ̄

)
(5.5.9)

is undetermined at tree-level. This is the pseudomodulus, part of the scalar superpart-

ner of the Goldstino, and since its value affects the masses of the other particles this flat

direction is lifted at 1-loop, see eq. (5.4.1).

Tree-level spectrum

The Madj has mass madj . The messenger fermion and scalar masses are

mφ =
h√
Nf

Msing m2
φ̃

= m2
φ ±

h

dNf

m′
2
. (5.5.10)
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Quantum corrections need to stabilize Msing in a region where the messengers are not

tachyonic, hence we require

〈|Msing|〉 >
m′√
hd
. (5.5.11)

We define the singlet sector to mean the superfields S, S̄, Z, Z̄,Msing and the vector su-

perfield of theU(1)S . The singlet spectrum is complicated and we discuss it in detail when

analyzing the stabilization of the uplifted vacuum in Section 5.7. The vector multiplet eats

a chiral multiplet via the superHiggs mechanism and two (one) chiral multiplets get an

F -term (D-term) mass. One multiplet is massless at tree-level: it contains the Goldstino,

the pseudomodulus and the R-axion.

Effect of instanton term

Turning on the instanton term creates SUSY-vacua far out in field space. The additional

terms in FMsing
are easily accounted for by replacing hf 2 → hf̃ 2 in eq. (5.5.2), where

hf̃ 2 = hf 2 − a

N
(Nf−1)/2

f

M
Nf−1
sing

ΛNf−3
. (5.5.12)

(Some of the previously undetermined phases now also get a non-zero VEV, but this does

not affect the one-loop stabilization of the pseudomodulus.) As Msing increases hf̃ 2 → 0

and hence S, S̄, Z, Z̄ → 0. Hence

〈Msing〉SUSY ∼ f

(
f

Λ

)(Nf−3)/(Nf−1)
=

Nf→5

√
fΛ. (5.5.13)

The small value of f/Λ is crucial for guaranteeing long-levity of the uplifted vacuum.

The effect of these R-breaking terms as well as the stabilization of the uplifted vacuum

via quantum corrections is illustrated in fig. 5.1.

Near the origin of field space we care about the changed behavior of the R-axion and

the pseudomodulus. The explicit breaking of the R-symmetry gives a small mass to the
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(a) (b) (c)

Figure 5.1: (a) The tree-level potential without the instanton term as a function of |Msing|
and S, where we have enforced tree-level VEVs |S̄| = |S| and Z = Z̄ = −d

√
NfMsingS/m

′.
The valley marked with a green band is perfectly flat in the |Msing| direction and shows
that the potential has a SUSY-breaking minimum for S2 = hf2

d
− m′2

d2Nf
. Note that the

messengers are tachyonic for |Msing| < m′/
√
dh. (b) The same potential with the instanton

term added. The minimum along the S-direction is approximately unchanged close to the
origin but is significantly shifted as we move outwards along the |Msing| direction. As we
walk along the the valley in the |Msing| direction (which now tilts slightly away from the
origin) we eventually reach the SUSY-minimum at |Msing| ∼

√
Λf and S,Z = 0. (c) We

compute quantum corrections to the potential along the pseudomodulus direction, i.e.
the green band in (b), by setting all fields to their VEVs in terms of |Msing|. The vacuum is
stabilized at |Msing| ∼

√
h/d f −→ Z, Z̄ ∼

√
h/d f 2/m′. The parameters used for these

plots in units of m′ were Nf = 5, Λ = 3.8× 109, f = 63 and (g, d, h) = (0.02513, 0.02, 1).

R-axion. Note that even though the large adjoint mass represents a very large explicit

R-breaking, since the adjoint does not get a VEV it is not part of the axion. The pseu-

domodulus is no longer a flat direction at tree-level, but is slightly tilted away from the

origin.

Tree-level zero modes

The fermionic component of the tree-level zero mode multiplet is the Goldstino, which is

eaten by the Gravitino once SUSY is gauged and gets the familiar mass

mG̃ =
Ftot√
3M∗

pl

≈ 0.4
r

d

m′2

M∗
pl

+O(r−1) for Nf = 5 , (5.5.14)
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where M∗
pl = (8πGN)−1/2 = 2.4 × 1018 GeV is the reduced Planck Mass. (Since r =√

hdNff/m
′ > 1 and d � 1, it is often instructive to expand for large r or large f/m′.)

The scalar components are the pseudomodulus and the R-axion (eqns 5.5.8, 5.5.9). To

compute the 1-loop potential for the pseudoflat direction we set all their phases to their

tree-level VEV or zero and express 〈Z〉, 〈Z̄〉 in terms of Msing, which gives VCW(Msing).

We emphasize that |Msing| is not the pure pseudomodulus, but its value parametrizes

where we are along the pseudo-flat direction in field space.1 This gives Veff (Msing) =

Vtree(Msing) + VCW(Msing). As per the discussion above, the first term is nonzero if we

include the instanton term. Minimizing Veff gives 〈Msing〉 and hence 〈Z〉, 〈Z̄〉, 〈S〉, 〈S̄〉. To

compute the derivative Veff along the flat direction we differentiate with respect to Msing

and multiply by a scaling factor FMsing
/Ftot to account for the fact that moving by δ along

the Msing axis moves us by δ
√

(FZ/FMsing
)2 + (FZ̄/FMsing

)2 + 1 along the pseudo-flat di-

rection. Hence we obtain the pseudomodulus mass as

m2
PM =

(
FMsing

Ftot

)2
d2Veff

d(Msing)2
. (5.5.15)

A similar argument holds for the R-axion mass if we restore the undetermined phases in

the tree-level potential. To ensure that we move along the correct direction in field space

we impose πZ,Z̄ = FZ
FMsing

πMsing
, differentiate with respect to πMsing

and apply the same

scaling factor.

These masses can be readily estimated. As we will see in Section 5.7,Msing is stabilized

at ∼
√
d/hf . Therefore it is is convenient to parametrize

〈Msing〉 = b

√
h

d
f, where b ∼ O(1). (5.5.16)

To obtain the R-axion mass we differentiate the tree-level potential with all VEVs subbed

1To avoid clutter, we omit the absolute value signs around Msing from now on – they are understood
when we talk about Msing as parameterizing the pseudomodulus direction.
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in. To lowest order in 1/r and 1/Λ we find that

FMsing

Ftot
≈ − 1√

2dhNf

m′

f
−→ mR ≈ 0.2 b

√
a

d3

m′2

Λ
for Nf = 5. (5.5.17)

To estimate the mass of the pseudomodulus we pre-empt another result from Section 5.7.

The rough scale of the second derivative of the 1-loop potential is∣∣∣∣ d2VCW

d(Msing)2

∣∣∣∣ ∼ 1

16π2

m′4

〈Msing〉2
(5.5.18)

(where Z, Z̄ → Z(Msing) = −d
√
NfMsing〈S〉/m′). To lowest order in 1/r this yields

mPM ∼
1√

32Nf π

m′

bh

(
m′

f

)2

≈ 0.1
d

b

m′

r2
for Nf = 5. (5.5.19)

Notice the m′/f suppression, simply due to the fact that if f � m′ then FMsing
� 〈Msing〉2

(similarly for Z, Z̄) and SUSY-breaking is weak. (Effectively this can also be seen as a

suppression for small d, since decreasing d increases the minimum size of f to ensure eq.

(5.5.4) is satisfied.)

5.5.2 The ISS Vacuum (k = 1)

Since this is very similar to a standard (N,Nf ) = (1, 5) ISS vacuum we will use the nota-

tion of Section 5.3.2 (except for renaming the SU(Nf − N) meson Z → M̃ to avoid con-

fusion with the singlets Z̄, Z) and split up the meson according to eq. (5.4.3). The squark

VEV 〈χ̄1χ1〉 = f 2− d
h
SS̄ sets FV = 0, with all other SQCD-sector VEVs zero (except M̃sing).

This gives the same singlet potential as eq. (5.5.2) with Nf → Nf − 1. Therefore the VEVs

at tree-level close to the origin are 〈|S|〉 = 〈|S̄|〉, 〈|Z|〉 = 〈|Z̄|〉, 〈Z〉 = −
√
Nf − 1

〈M̃singS〉
m′

,

and

〈SS̄〉 =
hf 2

d
− m′2

d2(Nf − 1)
whenever hf 2 >

m′2

(Nf − 1)d
. (5.5.20)
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If this condition is not satisfied the singlets do not get a VEV and we have a standard

ISS vacuum. If we assume the condition holds (slightly stronger than eq. (5.5.4)), then

〈χ̄1χ1〉 = m′2/(dhNf − 1), meaning the scale of the squark VEV is given by m′ instead of

f . The total vacuum energy is

〈V k=1
0 〉 = 2hf 2m

′2

d
− m′4

d2(Nf − 1)
(5.5.21)

The SQCD spectrum is the same as ISS with mass scale ∼ m′, and the singlet spectrum

looks very similar to the uplifted case. We will not dwell on analyzing this vacuum, we

only needed to know the potential difference

∆V0 ≡ 〈V k=0
0 〉 − 〈V k=1

0 〉 =
m′4

d2

1

Nf (Nf − 1)
(5.5.22)

to calculate the uplifted vacuum lifetime in Section 5.7.4.

5.6 Direct Gauge Mediation

If we weakly gauge the SU(5) flavor group and identify it with the SM GUT gauge group,

this model realizes Minimal Gauge Mediation with a single 5⊕ 5̄ messenger pair:

Weff = Xφ̄iφ
i, (5.6.1)

where the SUSY-breaking spurions X = X + θ2F is given by

X =
h√
Nf

Msing → F =
h√
Nf

FMsing
= − h

dNf

m′
2
. (5.6.2)

Gaugino and sfermion masses are generated via the well-known 1- and 2-loop diagrams

and are parametrically the same size, solving the Gaugino Mass Problem. Using equa-

tions (5.2.4), (5.5.16) and (5.5.4) we can see that SUSY-breaking is weak:∣∣∣∣X2

F

∣∣∣∣ =

(
f

m′

)2

h2b2 >
hb2

dNf

� 1, (5.6.3)
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and therefore the soft masses are given by the usual simple expression

msoft ∼
α

4π

∣∣∣∣FX
∣∣∣∣ . (5.6.4)

Requiring TeV-scale soft masses sets |F/X| ∼ 100 TeV. This determines the scale of m′

(and hence f ):

m′ ∼
∣∣∣∣FX
∣∣∣∣ br, (5.6.5)

which sets the messenger mass at

X ∼ b2r2 h

dNf

∣∣∣∣FX
∣∣∣∣ ∼ r2 0.01

d
× (107 GeV) (5.6.6)

in the scenarios we are considering. The pseudomodulus, and Goldstino mass scales are

mPM ∼
1

r

(
d

0.01

)
× (10 GeV) (5.6.7)

mG̃ ∼ b2 r3

(
0.01

d

)
× ( keV). (5.6.8)

The field theory contribution to the R-axion mass is

mR ∼ b3 r2

(
0.01

d

)3/2
ΛGUT

Λ
× (100 keV). (5.6.9)

Depending on the size of r and b as well as the choice of scenario, this can be smaller or

larger than the BPR contribution [66].

Again using results from the next section for convenience, the mass of the singlet

vector multiplet is similar to the messenger mass whereas the other singlets (with the

exception of the tree-level zero modes) obtain a smaller mass ∼ r2|F/X|. Stabilizing the

uplifted vacuum in scenarios 1 and 2 requires r <∼ 102 and r <∼ 101 respectively, but

saturating the former bound gives a very heavy gravitino and reintroduces the SUSY

flavor problem. Therefore 1 < r <∼ 101 is the relevant parameter range for our model.

Since the adjoint meson gets a mass that is only a few orders of magnitude below

the duality transition scale Λ, which itself is either at or close to the GUT-scale, there
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is no Landau Pole in our model. (Scenario 2 is also an example of deflected unification

[13].) However, we point out that due to the minimality of this hidden sector such a

heavy adjoint is not required to solve the Landau Pole Problem – if the adjoint mass was

generated by some other mechanism it could be as low as ∼ 10− 100 TeV.

5.7 Stabilizing the Uplifted Vacuum

We now examine how the singlet sector originally proposed in [182] stabilizes the up-

lifted vacuum. The stabilization is possible due to the singlet sector’s U(1)S gauge group

[355], which can supply a negative coefficient to the logarithmic dependence of VCW and

push the minimum away from the origin beyond the region where the messengers are

tachyonic. We perform this analysis to 1-loop order even though d� h and 2-loop effects

from h might be competitive. This will be justified in Section 5.7.3. For simplicity we set

a = 1 throughout.

The effective potential is given by

Veff = Vtree + VCW, (5.7.1)

where all tree-level VEVs and masses are expressed as functions of Msing, which

parametrizes the pseudomodulus VEV. Vtree is easily obtained by combining equations

(5.5.6) and (5.5.12).

Vtree =
2hf 2m′2

d
− m′4

d2Nf

− 2m′2

d

a

N
(Nf−1)/2

f

M
Nf−1
sing

ΛNf−3
. (5.7.2)

slopes away from the origin due to the effect of the instanton term. VCW is computed by

obtaining the mass spectrum without the effects of the instanton term1 and using eq. (5.4.1).
1If the instanton term is so large that its backreaction significantly affects the 1-loop potential, its tree-

contribution will be so large as to erase any minima created by VCW anyway.
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5.7.1 Organizing the Spectrum & Contributions to VCW

All nonzero tree-level masses depend on the value of the pseudomodulus, parametrized

by the value of Msing by imposing Z = Z̄ = −d
√
NfSMsing/m

′. It is helpful to express all

masses in units of m′ and define the following set of parameters:

x = d
√
Nf |Msing| , r =

√
hdNf

f

m′
, q =

4

Nf

g2

d2
(r2 − 1) , p =

h

dNf

. (5.7.3)

In this parametrization, h just rescales the other variables. r > 1 is required for singlet

VEVs. This parametrization has the advantage that the masses in every split supermul-

tiplet depend only on x and one of the r, q, p parameters. This allows us to study the

different VCW contributions independently as functions of just two variables each.

• The messenger masses can be written as m2
F = p2x2 and m2

S = p2x2 ± p, and are

tachyonic for x < 1/p. In the leading-log approximation for large x their contri-

bution to the 1-loop potential is V mess
CW ≈ 1

64π2 8Nfp
2 log x. (We will ignore additive

constants to the potential.)

• Two singlet chiral supermultiplets have F -term masses that depend only on r and

x. For large x their masses go as ∼ x and ∼ 1/x, so we denote them Rheavy and Rlight

respectively. The contribution V Rheavy
CW stands out because it is the only one that

always has a local minimum, located at x ≈ 1.3r − 1 to a very good approximation.

For most values of the parameters the other contributions to the 1-loop potential

wash out this minimum and the uplifted pseudomoduli space is not stabilized.

However, if the other components cancel to high enough precision then the min-

imum survives and is located at 〈x〉 ∼ r. This justifies the parametrization

〈Msing〉 = b

√
h

d
f where b = O(1). (5.7.4)
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For large x the light multiplet does not contribute to VCW, whereas V Rheavy
CW ≈

1
64π2 4 log x. Near the local minimum of the total 1-loop potential, their masses to

lowest order in 1/r are m2
Rheavy
Rlight

≈ 1
2

(
4 + b2 ± b

√
8 + b2

)
r2.

• One chiral and one vector multiplet get masses from the U(1)S D-term, both∼ x for

large x. Call them Qvector and Qchiral. In the leading-log approximation the contribu-

tions to the 1-loop potential are V Qvector
CW ≈ 1

64π2 (−8q) log x and V Qchiral
CW ≈ 1

64π2 4 log x.

Near the local minimum of VCW, their masses to lowest order in 1/r are

m2
Qvector ≈ 4b2g2r4/(d2Nf ) and m2

Qchiral ≈ b2r2.

Adding all the contributions together, we see that the total 1-loop potential in the leading

log approximation valid at large x is

VCW ≈
1

8π2
(1− t) log x, (5.7.5)

where it will be convenient to define

t = q −Nfp
2. (5.7.6)

5.7.2 Conditions for local minimum

The leading-log approximation is excellent for V mess
CW and V Q

CW, even as close to the origin

as x ∼ 〈x〉. Hence we can understand the tuning required for stabilizing the uplifted vac-

uum as follows. Imagine starting out with a choice of parameters for which there is a local

minimum of VCW. If we then increase t, the coefficient of the logarithm in the potential

decreases until the minimum is wiped out and the potential just slopes towards the SUSY-

minimum. Conversely, if we decrease t the coefficient of the logarithm increases and the

minimum gets pushed towards the origin, eventually disappearing into the region where
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the messengers are tachyonic. Therefore having a local minimum requires t ∈ (tmin, tmax),

where tmin,max are O(1) functions of the other parameters. Expressing the singlet-sector

gauge coupling in terms of t,

g(t)2 =
h2 + d2Nf t

4(r2 − 1)
, (5.7.7)

translates this condition into a required tuning for g. However, it is more instructive to

recast the stabilization requirement as a constraint on the mass ratio(
m′

f

)2

= 4g2Nf
d

h

(
1− d2

h2
Nf t

)
+O(g4) +O(d5). (5.7.8)

We can see immediately that even if t is allowed to take on an O(1)-range of values to

guarantee a local minimum, m′/f must actually be adjusted to a precision of

∆ ∼ d2

h2
∼
(

Λ

ΛUV

)2

. (5.7.9)

This is ∼ 10−4 in the two scenarios we are considering but could be significantly larger if

one were less conservative about the separation of scales for Λ,ΛUV . Tuning of this order

of severity is typical in uplifted models that are stabilized by 1-loop corrections, and we

make no attempt to explain it here. It would be very interesting to investigate whether

such a mass ratio might be generated by some kind of UV-completion, but it lies beyond

the scope of this paper.

What is the actual allowed range of t? If we switch off the instanton term then there

can be no minima of VCW if the coefficient of the logarithm is negative for large x. Hence

tapproxmax = 1. To find the smallest allowed value of twe numerically investigate the behavior

of VCW and we find that tapproxmin ≥ 1/2, with the inequality becoming saturated for r ∼> 10.

Switching on the instanton term has the effect of reducing tmax from the approximate

value of 1, since the Vtree contribution has negative slope and increasing t beyond tmin

causes the overall potential to have negative slope before we reach t = 1. This effect is
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(a) (b)

Figure 5.2: (a) For |F/X| = 100 TeV and d = 0.04 in Scenario 1, Veff has a local minimum
in area of the r-t plane enclosed by the green curve. For Scenario 2 this area shrinks down
to the shaded region due to the increased effect of the instanton term. (b) Areas of the r-t
plane where Veff has a local minimum for d = 0.04, 0.02, 0.01 (green/light, blue/medium,
red/dark) in Scenario 1. rmax ∝ d5/6, so decreasing d from 0.04 to 0.01 decreases the area
where there is a minimum. These areas do not depend significantly on h.

more pronounced for larger r, since increasing f/Λ increases the effect of the instanton

term.

To understand this in more detail we studied the complete Veff numerically. By fixing

|F/X| in eq. (5.6.4) at 100 TeV one can find tmin, tmax as functions of r for various values

of d and h in scenarios 1 and 2, see fig. 5.2. As expected the instanton term does not have

a significant effect on tmin but decreases tmax from 1 with increasing severity for larger r.

This effectively defines a maximum value of r for which there can still be a local minimum

of Veff , and rmax appears approximately ∝ d for fixed Λ, ΛUV .

We can explain this behavior of rmax analytically. For fixed other parameters, rmax is

approximately the value of r for which the scale of the gradient of VCW near the minimum

becomes smaller than the scale of the gradient of Vtree (eq. (5.7.2)). We can roughly esti-

mate rmax by equating the gradient of the leading log approximation to VCW (eq. (5.7.5))
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d = 0.01 d = 0.04

(a) (b)

Figure 5.3: Estimate of log10 rmax for different values of d ∼ Λ/ΛUV . The upper and lower
regions are excluded to satisfy Λ� ΛUV and r > 1.

to the gradient of Vtree for Msing ∼
√
h/df and t ∼ 0.5. This yields

rmax ∼ d5/6

(
Λ

|F/X|

)1/3

(5.7.10)

and explains the approximate linear dependence of rmax on d observed numerically.

For Scenarios 1 and 2 this gives rmax ∼ 102 and ∼ 101, depending on the exact value

of d. This agrees with our numerical results to ∼ 30%. Figure 5.3 shows that there are

no minima for Λ � ΛUV /100 since the coupling between the singlet and SQCD sectors

becomes to weak for effective stabilization, which justifies considering only our two sce-

narios.

Finally, we can also use these ideas to get a rough estimate of the pseudomodulus

mass scale. Simply differentiating eq. (5.7.5) and setting t ∼ 0.5 yields eq. (5.5.18).
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5.7.3 Validity of 1-loop calculation

The smallness of d ∼ 0.01 compared to h ∼ 1 and g (depending on the size of r) might

cause us to suspect that all these results would be invalidated by 2-loop corrections. For-

tunately, this naive expectation is not realized due to the nature of contributions to the

effective potential. The leading-log approximation to the 1-loop potential eq. (5.7.5) is a

very good approximation for the complete contributions from messengers (loops involv-

ing the h-coupling) and singlets with D-term masses (involving the g-coupling), as well

as the logarithmic contributions from singlets with F -term masses. The only components

not included are the small-x contributions from singlets with F -term masses, and those

are the contributions with non-trivial features required to generate the minimum.

The tuning can be understood as canceling the smooth logarithmic contributions to the

effective potential to high enough precision so that the minimum created by the contribu-

tions from singlets with F -term masses survives. Since d is so small, this local minimum is

pushed out to rather large field values Msing ∼
√
h/d f where the leading log approxima-

tion for the ‘uninteresting’ contributions is excellent. This makes the two-loop corrections

involving two h and g couplings (messengers and singlets with D-term masses, respec-

tively) very smooth as well, meaning they do not introduce any gross new features to the

effective potential. Therefore they just generate a smooth correction to eq. (5.7.5), which

can be compensated for by slightly adjusting the gauge coupling g (or the ratio m′/f )

and should not significantly affect the existence of local minima or the severity of tuning

(though eq. (5.7.8) might have to be slightly adjusted). Therefore the important features

of our analysis are valid.
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5.7.4 Lifetime Constraints on Uplifted Vacuum Stabilization

We now check that the uplifted vacuum is stable enough to have not decayed in the life-

time of the universe. For each decay path across the potential landscape we estimate

the Bounce Action B which exponentially suppresses the decay width [141]. We require

B ∼> 103 [242, 98]. For rough estimates of the bounce action we approximate the potential

along the decay path as a triangular barrier, which yields very simple analytical expres-

sions for B [190].

There are two decay paths that are only forbidden by loop-sized effects. As illustrated

in fig. 5.1, Msing can either tunnel towards the origin, in which case the messengers be-

come tachyonic and the fields roll towards the ISS vacuum, or it can tunnel away from

the origin and roll towards the SUSY-minimum.

To estimate the bounce action for decay to the ISS vacuum along the pseudoflat direc-

tion we take limit where the height of the potential barrier and the distance from the edge

of the barrier to the ISS vacuum goes to zero. This underestimates B and gives

BISS > 2π2Nf − 1

Nf

r4(2r2 − 1)2

(d/b2)2
∼ 8π2

5︸︷︷︸
∼15

(
ΛUV

Λ

)2

︸ ︷︷ ︸
>104

b2 r4
(
2r2 − 1

)2︸ ︷︷ ︸
>1

� 103 (5.7.11)

Turning to the bounce action for decay to the SUSY vacuum along the pseudoflat direction

we again take the height of the potential barrier to zero and neglect several unknown or

parametrically smaller contributions to the length of the decay path. Using ∆V 0 from

eq. (5.5.22) as the depth of the potential well on the other side of the barrier we obtain

(neglecting O(1) factors)

BSUSY >
32π2

3

√
Λ

f

1

d3/2
� 103 (5.7.12)

Both decays are sufficiently suppressed.
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5.8 Conclusions

The ISS framework [262] is an extremely appealing model building arena for exploring

non-perturbative meta-stable SUSY-breaking. However, previous ISS-based models of

Direct Gauge Mediation are plagued by several problems, both aesthetic and phenomeno-

logical, which include small gaugino masses (exacerbating the little hierarchy problem),

Landau Poles and non-renormalizable operators with somewhat contrived flavor con-

tractions. Since the issue of small gaugino masses has been understood to be related to

the vacuum structure of the theory [227], one model-building challenge is the formulation

of plausible uplifted ISS models.

We first outlined some simple but general model-building guidelines for stabilizing

uplifted ISS models, which lead us to conclude that meson-deformations are required

(or at least heavily favored) to stabilize the adjoint component of the magnetic meson in

the hidden sector. However, the singlet can be stabilized by a variety of mechanisms,

which makes it possible that an uplifted hidden sector with minimal flavor group might

be viable.

This lead us to propose Singlet Stabilized Minimal Gauge Mediation as a simple ISS-

based model of Direct Gauge Mediation which avoids both light gauginos and Landau

Poles. The hidden sector has trivial magnetic gauge group and minimal unbroken SU(5)

flavor group, while the uplifted vacuum is stabilized by a singlet sector with its own

U(1) gauge symmetry, generating a nonzero VEV for the singlet meson via the inverted

hierarchy mechanism.

The stabilization mechanism used in our model necessitates adjusting parameters to

a precision of ∼ (Λ/ΛUV )2 ∼ 10−4, a common problem with quantum-stabilized models.
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While this tuning can be reduced by being less conservative about the separation of scales,

one might question the advantage of this tuning compared to the tuning in the MSSM

higgs-sector associated with a split-SUSY spectrum. Apart from the fact that a split-SUSY

spectrum might not be experimentally observed, the key is that a split-SUSY spectrum

cannot be avoided in most models of Direct Gauge Mediation that are in the ground state,

in particular standard ISS1. This paper shows that it is possible to stabilize an uplifted

ISS model with very small flavor group, a necessary condition for avoiding Landau Poles

of the SM gauge couplings, and while the current stabilization mechanism requires said

tuning it seems plausible that an alternative mechanism with generically stabilized up-

lifted vacua exists. That makes our stabilization-tuning preferable to the ‘unavoidable’

higgs-sector tuning from a split-SUSY spectrum.

1One might have an independent suppression mechanism for the sfermion masses, see for example [234]
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CHAPTER 6

LEPTOGENESIS IN THE COMPOSITE NEUTRINO MODEL

Based on the 2008 article “Leptogenesis with Composite Neutrinos”, written in

collaboration with Yuval Grossman and published in JHEP 0812 (2008) 016.
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6.1 INTRODUCTION

In recent years it has become clear that neutrinos have very small masses and that they

mix. The origin of these masses is still an open question. The see-saw mechanism is prob-

ably the most elegant explanation for small neutrino masses. The idea is to add heavy Ma-

jorana right handed (RH) neutrinos to the theory. These added particles give very small

Majorana masses to the active, Standard Model (SM) neutrinos. The see-saw mechanism

has one more virtue: it provides an elegant mechanism to explain the observed baryon

asymmetry in the universe. The idea of this mechanism, called Leptogenesis (LG) [212],

is that the heavy RH neutrinos that drive the see-saw also generate lepton asymmetry

when they decay. Part of this lepton asymmetry is transformed into the observed baryon

asymmetry of the universe (for a review see [164]).

While the see-saw mechanism is very simple and successful, it is not the only way to

explain the observed small neutrino masses. Another idea for getting light neutrinos that

has not been widely discussed is that of composite RH neutrinos [48, 315]. The basic idea

is that there exists a new sector with strong dynamics at a scale Λ. The confinement in this

sector leaves some chiral symmetries exact and produces massless composite fermions.

The only interaction between the preons of the new sector and the SM sector is via heavy

messengers with large masses of order M . Then, the Yukawa coupling between the LH

and RH neutrinos is suppressed by powers of the small factor Λ/M . This can give a

natural explanation for small Dirac or Majorana neutrino masses.

In this article we further investigate the composite RH neutrino idea. First, we find

UV completions for models that give Dirac or Majorana neutrino masses. We then study

how these full models can give LG. We find that it exhibits interesting LG possibilities. In

particular, it can have see-saw like LG and a low mass scale Dirac LG.
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In the next section, we give a brief review of the composite RH neutrino idea of

ref. [48]. We find UV complete theories in section III for both Dirac and Majorana neu-

trinos where the new particle content is given, and the experimental constraints are dis-

cussed. In section IV, we study LG possibilities in the model. When the temperature T

is below the confinement scale, T � Λ, and the RH neutrinos are heavy, the composite

structure of the RH neutrinos cannot be probed and standard LG become possible (IV.A).

When T ∼ M � Λ, the preons are asymptotically free and standard LG cannot work. In

the case of Dirac neutrinos, the decay of heavy messengers gives a realization of a low

energy Dirac LG (IV.B). In section V we conclude. A detailed calculation of the effective

couplings is given in Appendix A. The experimental bounds on the masses and couplings

of the new fields arising from lepton flavor violating processes are given in Appendices

B and C.

6.2 COMPOSITE RIGHT-HANDED NEUTRINO

We first review the idea of composite right-handed neutrinos [48]. Consider a new strong

sector such that all the new fields are SM singlets. Like QCD, where the interaction be-

comes strong at a scale ΛQCD, the new sector becomes strong at a new scale Λ. Unlike

QCD, however, we assume that the confinement in the new sector keeps some of the chi-

ral symmetries unbroken. In that case, massless composite fermions are generated since

they are required for anomaly matching of the unbroken chiral symmetries.

The view point in [48] is that of an effective field theory where the model is a low

energy description of a more fundamental theory. In that case one needs to include non-

normalizable operators that are suppressed by some high energy scale M . We can think

about such operators as emerging from integrating out heavy fields. That is, it is assumed
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that the “preons” in the new sector interact with the SM fields through “messengers.” The

messengers are fields that are charged under both the SM and the preon sector, and are

assumed to be very heavy, with the mass scale M � Λ. After confining dynamics occur,

the couplings between the composite fermions and the SM fields are naturally suppressed

by powers of the small ratio Λ/M . In particular, the fact that the coupling between the

composite and SM fermions are suppressed makes the composite fermions candidates to

be light RH neutrinos.

The work of Ref. [175] is a well known example of a model and strong dynamics with

unbroken chiral symmetries. The model is based on an SU(n + 4)C gauge group with

a single antisymmetric tensor A and n antifundamentals ψf (with f = 1..n). Below the

confinement scale the theory is described by n(n + 1)/2 massless composite “baryons”

B̂ff ′ = B̂f ′f = ψfAψf ′ . These baryons are identified with the RH neutrinos.

In this work, we focus on the n = 2 case, that is a model with a gauge group SU(6)C .

This model has three massless baryons that can give mass to the three SM neutrinos.

These baryons are connected to the SM neutrinos through higher dimension operators

suppressed by the high mass scale M . The lowest dimension operator of interest is

λff
′,i

(ψTf A
∗ψf ′)L

†
iH̃

M3
≡ λff

′,iε3Bff ′L
†
iH̃, (6.2.1)

where i = 1, 2, 3 runs over the three SM generations and we define

ε ≡ Λ

M
, Bff ′ ≡

ψTf A
∗ψf ′

Λ3
, H̃ ≡ iσ2H∗, (6.2.2)

such that Bff ′ are the canonically normalized baryon fields. If lepton number is a good

symmetry of the model, the term in (6.2.1) generates Dirac masses to the SM neutrinos

mν = λε3v, (6.2.3)

where v is the Higgs vev and flavor indices are suppressed.

170



We can also include lepton number violating terms in the theory. Then we have the

well known see-saw term

yij
L̄iL̄jHH

M
. (6.2.4)

In addition, there are new terms involving the composite fermions

hff
′,gg′ (ψfAψf ′)(ψgAψg′)

M5
= hff

′,gg′Mε6Bff ′Bgg′ . (6.2.5)

The neutrino mass matrix is now a 6× 6 matrix that in the (Lα, Bff ′) basis is given by yv2/M λε3v

λε3v hε6M

 , (6.2.6)

where flavor indices are implicit. Diagonalizing the matrix and assuming that all the

dimensionless couplings are order one we get

mν ∼
v2

M
, mN ∼ ε6M, θLR ∼ min

(√
mν

mN

,

√
mN

mν

)
. (6.2.7)

mν and mN are, respectively, the LH and RH neutrino masses, and θLR are the mixing

angles between the LH and RH neutrinos.

We learn that composite RH neutrinos can naturally give small neutrino masses. They

can be Dirac masses, eq. (6.2.3), or Majorana masses, eq. (6.2.7).

6.3 THE UV COMPLETE THEORY

In [48] a low energy effective theory approach was used. In this section, we give UV

completions of the models studied in [48]. In III.A, we present the particle content. In

III.B, the interactions relating to the new fields are listed and the number of physical
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SU(6)C SU(2)L U(1)Y Q spin L Qps SU(2)ψ

iL
α
L 1 2 −1

2
0, −1 1

2
1 0 1

iER 1 1 −1 −1 1
2

−1 0 1

Hα 1 2 1
2

1, 0 0 0 0 1

gΩ
α
ab 15 2 −1

2
0, −1 0 0 2 1

fψa 6 1 0 0 1
2

0 1 2

Aab 15 1 0 0 1
2

−1 2 1

Φab 15 1 0 0 0 0 2 1

kN 189 ; 1 1 0 0 1
2

break 0 1

Table 6.1: The fermions and scalars of the SU(6)C model. We divide the particles into four
groups. From top to bottom: the SM fields, the messenger, the preons and the optional
lepton number violating Majorana fermion.

parameters is discussed. In III.C, we obtain bounds on the parameters from µ → eγ and

muon-conversion experiments. In Appendix. A, we show how the coupling of eqs. (6.2.1)

and (6.2.5) are obtained by integrating out the heavy fields of the UV complete theory.

6.3.1 Particle Content

We consider the case of an SU(6)C gauge symmetry in the preon sector. As we mention

before, this gives three composite neutrinos. The generalization for models with a larger

symmetry is straightforward. The minimum particle content of this model is listed in

Table 6.1. In the table we identify representations by their dimension. In the SM sector,

iL
α
L and Hα are lepton and Higgs doublets carrying SU(2)L index α = 1, 2 while iER is an

SU(2)L singlet. L and E carry generation index i = 1, 2, 3.

There are two types of fermions in the preon sector. The first fermion, fψa, is a funda-

mental under SU(6)C that carries a flavor index f = 1, 2 and SU(6)C index, a = 1, 2, ..., 6.
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The other fermion, Aab, is a second rank antisymmetric tensor, that is it belongs to the

(0, 1, 0, 0, 0) representation of SU(6). Composite fermions are made of these two types of

fundamental fermions.

Aside from the fermions we also need scalars that connect the fermions to the SM

fields. One scalar, gΩα
ab, is a heavy messenger, as it is charged under both the SM and

preon gauge groups. It carries a generation index g = 1, 2 (as discuss below, this is neces-

sary for LG) and transforms as a second rank antisymmetric tensor under SU(6)C and as

a fundamental under SU(2)L. The other heavy scalar, Φab, used for connecting two ψ’s to-

gether, transforms as a second rank antisymmetric tensor under SU(6)C . The mass scale of

both heavy scalars is M , which is assumed to be much larger than the preon confinement

scale Λ.

Lastly, in models with lepton number violation we need one more field that breaks

lepton number. This field, kN , is a SM singlet, and can be either a singlet or a 189 of

SU(6)C . [The 189 of SU(6) is (0, 1, 0, 1, 0).] Here k = 1, 2 is the generation index, which is

needed, as discuss below, for LG.

There are three accidental symmetries for this model, U(1)L, U(1)ps, and SU(2)ψ. U(1)L

is the SM lepton number L. It is exact in the model without N , but broken when the

Majorana field N is included. U(1)ps, where “ps” stands for “preon sector”, corresponds

to a preon sector charge, Qps. Only preons and heavy scalars carry such charge. SU(2)ψ

is a symmetry due to the antisymmetry of the ψ field and correspond to flavor rotation

between the two flavors of ψ. Only ψ is charged under this symmetry.
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6.3.2 Interactions

We move to discuss the renormalizable interaction terms of the model. The SM Yukawa

interactions

Y e
ijL̄

i
LHE

j
R + h.c., i, j = 1, 2, 3, (6.3.8)

are well known, and we do not discuss them any further. We only recall that the Yukawa

couplings, Y e
ij , contain 9 complex parameters.

There are mass terms for the new scalar fields

M2
Ωgg′Ω

†
gΩg′ +M2

ΦΦ†Φ. (6.3.9)

Here M2
Φ is a dimensionfull coupling with 1 real parameter, and M2

Ω is a 2 × 2 hermitian

matrix with 3 real and 1 imaginary parameters. We assume that all new masses are of the

same order, M2
Ω ∼M2

Φ ∼M2.

There are also interaction terms that involve the new fields. In both the L-conserving

and L-violating models, the following terms are the most relevant to our study

Y L
giAΩ†gLi + h.c., (6.3.10)

M̃gH̃
†Φ†Ωg + h.c., (6.3.11)

Y A
ff ′ψfΦ

†ψf ′ + h.c. . (6.3.12)

These couplings generate the effective Yukawa interaction of (6.2.1) via the diagram in

Fig. 6.1a (see appendix A). The coupling Y L
gi is a general 2×3 matrix containing 6 real and

6 imaginary parameters. M̃g corresponds to two dimension full complex coefficients with

g = 1, 2. We assume that each of the elements of M̃g is of order M . The coupling Y A
ff ′ is a

2× 2 antisymmetric matrix with 1 complex parameter (see appendix A).
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In the L-violating case we include the N field. The relevant couplings include a Majo-

rana mass term

MNkk′NkNk′ , (6.3.13)

where we assume MN ∼M , and interaction terms

Y N
k Φ†ANk + h.c. . (6.3.14)

The mass term (6.3.13) and the interaction term (6.3.14) are included for the two possible

representations of N , the singlet and the 189. These two terms generate the L-violating

term of eq. (6.2.5) through the diagram in Fig. 6.1b. If N is a singlet under all the gauge

symmetries, an additional coupling

yNikH
†LiNk + h.c., (6.3.15)

exists. This term is the usual Yukawa coupling in the see-saw mechanism. Together with

the mass term of (6.3.13) it generates the usual see-saw term for the light neutrinos.

Aside from the couplings relating to neutrino masses and LG, there are couplings that

connect the new scalars to the SM Higgs field

λ
Ω(1)
gg′ H

†ΩgH
†Ωg′ + h.c., λ

Ω(2)
gg′ H

†HΩ†gΩg′ , λΦH†HΦ†Φ. (6.3.16)

These couplings result in having a Higgs mass much above the weak scale unless they

are fine-tuned. This is the usual fine tuning problem of the SM. In this work we do not

try to solve this problem, we just assume that there is a solution. Thus, in the following

we assume that the couplings in (6.3.16) vanish.

Next we count the number of physical parameters in the various models. In particular,

it is important to show that there are CP violating phases in the couplings that we used

for LG. We start with the L-conserving model. The parameters of the model discussed
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Figure 6.1: The diagrams that generate the effective couplings of the model. (a) generates
the Yukawa coupling of eq. (6.2.1) and (b) the L-violating term of eq. (6.2.5).

above introduced 22 real and 19 imaginary parameters. The counting is summarized in

Table 6.2. Not all of these parameters, however, are physical. In order to count the number

of physics parameters we need to see how many global symmetries are broken by the new

terms. The global symmetry breaking pattern is

U(3)L × U(3)E × U(1)A × U(2)ψ × U(2)Ω × U(1)Φ → U(1)L × U(1)ps × SU(2)ψ.

Thus, we can eliminate 7 real and 16 imaginary parameters corresponding to the broken

generators. This leave us with 15 real and 3 imaginary parameters. It is convenient to

work in a basis where all mass parameters are real and diagonal. In that basis the three

CPV phases are in Y L. Note that if we had only one generation for Ω there would be no

CPV in the model.

When including the N field there are more parameters and two more broken global

symmetries, U(2)N and U(1)L. The global symmetry breaking pattern becomes

U(3)L × U(3)E × U(1)A × U(2)ψ × U(2)Ω × U(1)Φ × U(2)N → U(1)ps × SU(2)ψ.

We then eliminate 8 real and 20 imaginary parameters corresponding to the broken gener-

ators. When N is a 189, there are 19 real and 4 imaginary parameters in the theory. When

N is singlet, the model has 25 real and 10 imaginary parameters.
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Symbol Number of Number of
parameters (R+I) Physical parameters (R+I)

M2
Ω 3+1 2+0

M2
Φ 1+0 1+0

M̃ 2+2 2+0
Y e 9+9 3+0
Y L 6+6 6+3
Y A 1+1 1+0

MN 3+3 2+0
Y N 2+2 2+1

yN 6+6 6+6

Table 6.2: Parameter counting. We divide the couplings into three groups: For the L-
conserving model, we only have the couplings in the first group. For the L-violating
model, if N is a 189, we have the couplings in both the first and the second group. When
N is a singlet, we have all the three groups. For each coupling we list the number of
parameter as well as the number of parameter in our “physical” basis choice. We list
separately the number of real and imaginary parameters.

6.3.3 Experimental Bounds

One potential issue with the full model is the contributions of the heavy particles to rare

processes. The effect of new SM singlets is quite small as they do not couple to SM fields.

The messenger, however, can have significant effect as it charged under the SM gauge

group. Here we study the most significant bounds. They arise from µ → eγ, muon

electron conversion in nuclei, and cosmology.

Starting with µ → eγ, see Fig. E.1. In the appendix we calculate the decay rate,

eq. (E.2.25),

Br(µ→ γe) =
α|Y L|4

3072πG2
FM

4
(6.3.17)
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Comparing it to the experimental bound [?]

Br(µ→ eX) < 1.2× 10−11, (6.3.18)

we obtain a lower bound

M > 10|Y L| TeV. (6.3.19)

For coherent muon electron conversion in nuclei (Fig. E.2), the theoretical expression

is estimated in the appendix, eq. (E.3.32),

Br(µ→ e, T i) ≡ wconv
wcap

≈ 108|Y L|4
(mµ

M

)4

. (6.3.20)

The experimental bound on the branching ratio is [269]

Br(µ→ e) < 1.7× 10−12. (6.3.21)

Comparing the theoretical prediction with the experimental data we get a bound on M

M > 10|Y L| TeV. (6.3.22)

which is the same as the one we get from µ→ eγ, (6.3.19).

Aside from the constraints coming from particle physics, constraints from big-bang

nucleosynthesis (BBN) can be strong when the RH neutrinos have Dirac masses. The

reason for this is that the three extra light modes can be populated before BBN. Then the

energy density, which depends on the number of relativistic particles, would be different

from the SM one. This difference affects the observed ratio of primordial elements.

The number of light degrees of freedom is parameterized by the number of neutrinos.

The most stringent bound coming from BBN and CMB data implies Nν ≤ 3.3 at 95% CL

[269], that is, the effective contribution of the RH neutrinos can account for as much as 0.3

of one active neutrino.
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This bound rules out any model where the RH neutrinos are populated at the same

temperature as the SM ones. Yet, if the temperature of the RH sector is lower, the model

is viable. The point is that the contribution to the energy density scales like T 4 (where T is

the temperature). Explicitly, the energy density of the SM sector (with temperature TSM )

and the three light composite neutrinos (with temperature TCN ) is given by [273]

ρ =
π2

30
( g∗T

4
SM +

7

8
× 3× 2× T 4

CN ), (6.3.23)

where g∗ ' 11 is the effective number of degrees of freedom in the SM sector (including

three massless LH neutrinos). Requiring that the RH neutrinos contribute less than 0.3

active neutrinos is equivalent to the condition

3T 4
CN

<∼ 0.3T 4
SM ⇒ TCN <∼ 0.5TSM . (6.3.24)

We learn that we need the composite neutrino temperature to be less than about half of

the SM one in order to satisfy the energy density constraint from BBN.

Next we compare the temperature of the two sectors. The preon confinement scale, Λ,

is larger than the EW scale. Therefore, the light composite neutrinos decouple from the

thermal bath at T ∼ Λ which is before the EW phase transitions. Thus, the temperature

of the composite neutrinos is different than that of the active one. The temperatures ratio

is inversely proportional to the ratio of scale factors, TCN = (ai/af ) Λ. The temperature

in the SM sector, however, is not just inversely proportional to the scale factor, but is

higher than this due to the decrease in the number of degrees of freedom. The total

number of degrees of freedom in SM sector is g∗ ' 106 when T = Λ but becomes g∗ ' 11

when T = TSM just before BBN. Making the conservative assumption that the EW phase

transition is of second order and thus gives no latent heat, the equality between the initial

and the final entropies in SM sector gives

106× a3
i × Λ3 = 11× a3

f × T 3
SM ⇒ TCN ' 0.47TSM , (6.3.25)

179



which satisfies the BBN bound (6.3.24). When the SM is extended to include extra fields

(like in the MSSM) or when the EW phase transition is first order, TCN/TSM is even smaller

and thus also satisfies the BBN bound.

6.4 LEPTOGENESIS

As has been discussed, one phenomenological use of the composite model is the real-

ization of leptogenesis. In this section we discuss two LG possibilities corresponding to

different reheating temperatures and particle contents. First, we study a model with L-

violating interactions and low reheating temperature, T , that is, T � Λ. In this model,

standard LG from decays of the heavy composite RH neutrinos is possible. Second, we

study a Lepton number conserving model with T � Λ. We can have a realization of Dirac

type LG where the new fields can be as light as 10 TeV.

6.4.1 Standard leptogenesis

Consider the L-violating model with T � Λ. In this case, the preon sector is in its confin-

ing phase, and the effects of the interior structure of the RH neutrinos cannot be probed.

The model looks like the standard see-saw model, and thus we should check if we can

get standard LG in that case.

Using Eq. (6.2.7), assuming that all dimensionless couplings are O(1), and setting the

active neutrino mass to mν ∼ 10−2 eV, the composite RH neutrino mass is of order

mN ∼ 1015ε6 GeV. (6.4.26)
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We define the standard two parameters [164]

m̃ ≡ 8π
v2

m2
N

ΓD, m∗ ≡ 8π
v2

m2
N

H
∣∣∣
T=mN

. (6.4.27)

They represent the particle decay and the universe expansion rate relating to LG. The

baryon asymmetry is estimated [164]

Y∆B '
135ζ(3)

4π4g∗

∑
α

εLαα × ηα × C ' 10−3 × η × εL, (6.4.28)

where α is a flavor index, g∗ ' 106 as in the SM, and ηα is the efficiency factor of LG under

various washout effects. In the weak washout regime (m̃ � m∗), we have η ' m̃2/m2
∗,

while in the strong washout regime (m̃ � m∗) we have η ' m∗/m̃. We use here the

SM value, C ' 12/37, to characterize the sphaleron effects that convert L-number into B-

number. For the sake of simplicity, we ignore flavor effects, as they are not changing the

order of magnitude of our results. (For a review of flavor effects see, for example, [164].)

Similar to standard LG, the asymmetry εL in this case (with Yukawa coupling λε3) is

given by [145] (with yn ≡M2
β/M

2
α)

εLαα ≡
Γ(Nα → LH)− Γ(Nα → L̄H∗)

Γ(Nα → LH) + Γ(Nα → L̄H∗)

=
∑
α 6=β

Im[(λλ†)2
αβ]ε6

8π(λλ†)αα

√
yn

[
1− (1 + yn) ln

(
1 + yn
yn

)]
∼ 1

8π
λ2ε6. (6.4.29)

Note that we explicitly kept the O(1) coupling λ in order to demonstrate where the CP

violating phase arises. Using the neutrino mass condition, (6.4.26), the RH neutrino decay

rate can be written as

Γ ' ε6

8π
mN ∼ 10−13 m

2
N

TeV
. (6.4.30)

The expansion rate at the time of decay is given by [273]

H|T=mN ' 10−15 m
2
N

TeV
. (6.4.31)
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Since Γ � H , the decay is in the strong washout regime. The baryon asymmetry is

therefore

Y∆B ' 10−3εL

(
H|T=mN

Γ

)
∼ 10−5ε6. (6.4.32)

Comparing to the observed value, Y∆B ' 10−10, we find that the following range of pa-

rameters lead to successful leptogenesis:

mN ∼ 1010 GeV, ε ∼ 10−1, M ∼ 1016 GeV, Λ ∼ 1015 GeV. (6.4.33)

These parameters correspond to a high energy LG scenario which gives the observed

values for mν and Y∆B.

6.4.2 Dirac-type leptogenesis

Next we move to study the T � Λ case. Then the preons are asymptotically free and we

perform all the calculations at the preon level. Since we care only about rough estimates

we do not include SU(6)C radiative corrections. Here we study the L-conserving model.

We get L-number conservation by not including the heavy Majorana fermion N . Below

we show that in that case the decay of the heavy messenger Ω gives a realization of Dirac-

type LG [174, 309].

The idea is as follows. When T ∼ M , the decay of Ω and Ω̄ gives different L and

L̄ in the final state. Yet, the decays also generate exactly the same difference between

the number of A and Ā. Since L and A carry opposite lepton numbers, the total lepton

number is zero. Yet, each sector (L and A) carry finite and opposite lepton number. Since

the equilibrating rate is smaller than the expansion rate, the L-number is preserved in

each sector. When the EW phase transition occurs, sphaleron processes only affects L
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Figure 6.2: The Ω decay process that gives the L-asymmetry.

and L̄, but not A and Ā. Thus, the sphalerons convert part of the L-number stored in the

leptons into B-number. We can end up with positive B-number and negative L-number

in SM sector. Since we only observe the B-number of the universe this mechanism can be

valid.

Specifically we consider the decay Ω → LA (Fig. 6.2). The asymmetry between this

decay and its conjugate process comes from the interference between the tree level and

the one loop diagrams. It is given by

εΩj ≡
Γ(Ω̄j → ĀL̄)− Γ(Ωj → AL)

Γ(Ω̄j → ĀL̄) + Γ(Ωj → AL)

=
1

8π

M2
j −M2

Φ

M2
j −M2

k

(
M̃jM̃k

M2
j

)
Im((Y L†Y L)jk)

(Y L†Y L)jj
∼ r2

8π
, r ≡ M̃

M
. (6.4.34)

Here j, k = 1, 2 and j 6= k. Mj, Mk, MΦ are the masses of Ωi, Ωj, Φ, and we assume

Mj ∼ Mk ∼ MΦ with MΦ < Mj such that Φ can be on-shell in the loop. Following the

convention in Table 6.2, we take the trilinear coupling, M̃ , to be real. The CP phase that

contributes to the asymmetry is in Y L. In half of the parameter space we end up with

negative L-number in the SM sector and positive L-number in the preon sector.

The natural scale of M̃ is M̃ ∼ M , that is r ∼ 1. (Yet, in the following we investigate

the allowed parameter space letting the ratio r to vary.) The main result from Eq. (6.4.34)

is that we can get very large lepton asymmetry. Thus, we have to check if washout effects

can reduce the asymmetry to the observed level.
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There are two kinds of washout processes: inverse decays and scattering that equi-

librates the L-number. Here, we would like to demonstrate that we can get Dirac-LG.

Thus, we only try to find some parts of the parameters space that can produce the ob-

served value of the asymmetry. We concentrate on the part of the parameter space where

the equilibrating scattering is negligible, that is, where the equilibrating rate between

positive and negative L-numbers is slower than the expansion of the universe.

The parameter space where equilibrating scattering is negligible can be found as fol-

lows. First, when T < M the only equilibrating process in our case is ĀL̄→ Hψ̄ψ̄, coming

from the diagram in Fig.6.1. Its interaction rate can be estimated as

Req|T ∼ |Y A|2|Y L|2
(
M̃

M

)2
T 7

M6
. (6.4.35)

Here the M−8 factor comes from the masses of virtual Ω and Φ. Unlike the original Dirac

LG scenario [174] where Req ∝ T , in our case Req drops much faster than H , that is,

Req ∝ T 2. Thus, if the equilibrating is slower than the expansion just when Ω begins to

decay, that is,

Req|T=M ∼ |Y L|2|Y A|2r2M < H|T=M ∼ 10−15 M
2

TeV
, (6.4.36)

then the equilibrating rate after this is always smaller than the expansion rate. In that

case scattering is very rare and can be neglected. That is, by choosing the parameter

space satisfying eq. (6.4.36), we only need to include the inverse decay for washout effect.

Within this range of parameters we only need to study the effect of inverse decays.

The L-asymmetry is given in eq. (6.4.34). We see that for r > 10−3, the inverse decay must

be significant in order to reduce the asymmetry into the observed value, Y∆B ∼ 10−10.

When including the efficiency factor given by the strong inverse decay, eq. (6.4.28), we
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have the asymmetry

Y∆B,Ω ' 10−4 × r2 ×
(
H|T=M

ΓΩ

)
∼ 10−18 × r2 × |Y L|−2 M

TeV
. (6.4.37)

If the inverse decay lowers the baryon asymmetry to the observed value, Y∆B ∼ 10−10,

the following condition should be satisfied

r2|Y L|−2 M

TeV
∼ 108. (6.4.38)

We are ready to find a region of the parameter space that gives successful Dirac-LG.

Besides the two constraints eqs. (6.4.36) and (6.4.38) we also have a constraint from the

Dirac neutrino mass

mν =

(
M̃

M

)
|Y L||Y A|ε3v ∼ 10−2 eV. (6.4.39)

We also require ε ≡ (Λ/M) < 10−2, in order justify integrating out the heavy scalars.

Then, eq. (6.4.39) gives

r|Y L||Y A| > 10−7. (6.4.40)

Last, we use |Y L|, |Y A| <∼ 1 in order for perturbation theory to work. Then, combining

eqs. (6.4.36), (6.4.38) and (6.4.40) we find a representative region in the parameter space

that gives a successful Dirac-type LG:

10−3r < |Y L| < 1, |Y A| < 10−4r−2, |Y A| < 1, M > 10 TeV,

10−7r−4TeV < M < 107r−2 TeV, ε < 10−2. (6.4.41)

As an example, when r = 1, the following parameters give a successful Dirac-LG with

strong washout effect

|M̃ | = M M = 10 TeV |Y L| = 10−3 |Y A| = 10−4 ε = 10−2. (6.4.42)
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When r = 10−3, the following parameters give a successful Dirac-LG with weak washout

effect

|M̃ | = 10−3M M = 108 TeV |Y L| = 10−3 |Y A| = 10−1 ε = 10−2.(6.4.43)

We note that when r > 10−2, the Ω mass can be as low as 10 TeV, which is, much lighter

than the Majorana neutrino mass in the standard LG. The reason that we can get low

energy LG is that the Dirac neutrino mass is not directly related to the lepton asymmetry.

That is, in the composite model the neutrino mass is suppressed by a factor (Λ/M)3. The

lepton asymmetry, however, is proportional to r, which is not a very small parameter.

In standard LG, on the contrary, both the neutrino mass and the lepton asymmetry are

proportional to the Yukawa couplings and thus they cannot be too small.

6.5 DISCUSSIONS AND CONCLUSIONS

We investigated models of composite RH neutrinos. First we find several UV comple-

tions of the models. These full models are not expected to be unique. They serve as an

example that such models can be constructed. Then we moved on to study leptogenesis

in these models. We find that such models can naturally give leptogenesis. In particular,

we discussed two possibilities corresponding to different temperatures and particle con-

tents. In the lepton number violating model we find that they can give standard LG from

RH neutrino decay. In models with lepton number conservation, we find that they can

provide a realization of low energy Dirac LG. We conclude that the idea of composite RH

neutrino is phenomenologically interesting: it naturally gives small neutrino masses and

successful leptogenesis.
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CHAPTER 7

WARM DARK MATTER IN THE COMPOSITE NEUTRINO MODEL

Based on the 2012 article “KeV Warm Dark Matter and Composite Neutrinos”, written in

collaboration with Dean J Robinson and published in arXiv:1205.0569.
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7.1 Introduction

Sterile neutrinos with masses at the keV scale are a popular warm dark matter (WDM)

candidate [317, 186, 339, 7, 187, 90, 108, 104, 54, 46, 286, 357, 215, 110, 284, 168, 167, 169, 45,

128, 304, 216]. Sterile neutrino WDM can be produced non-thermally via (non)-resonant

oscillations from the active neutrinos [186, 339, 7, 106, 107, 357, 284, 110, 163, 353], or

thermally with subsequent entropy dilution (see e.g. [89, 289]). Typically, the parameter

space spanned by the mass (hereafter md) and active-sterile mixing angle (hereafter θd)

for sterile neutrino WDM is most tightly constrained by Lyman-α [107, 89] and x-ray flux

[109, 105, 106, 169, 353] bounds, along with free-streaming, Tremaine-Gunn and big-bang

nucleosynthesis bounds, too (see e.g. [284, 163]). The aggregate effect of these bounds de-

pends on the production mechanism of the sterile neutrino WDM. In particular, at present

purely non-resonant production is disfavored, while windows exist for resonant produc-

tion and entropy-diluted thermal freeze out [106, 107, 110, 284].

In this Note, we show that elementary keV Dirac sterile neutrinos can be a natural

feature of the composite neutrino scenario [49, 315, 240, 301, 188], in the same way that

the light fermions of the standard model (SM) can arise naturally in the extended tech-

nicolor framework [198]. Briefly, the composite neutrino scenario is a class of theories

in which the right-handed neutrinos are composite bound states of a confining hidden

sector (CHS).

The possibility of such keV sterile neutrinos was first mentioned briefly in Ref.

[239], and some of its x-ray flux bounds were investigated in [253]. In this Note,

we present a more generalized discussion of this mechanism that is independent of

the precise details of the confining sector, and then proceed to investigate the possi-

ble cosmological histories for this WDM candidate. We show certain classes of CHS’s
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can naturally produce keV sterile neutrinos with active-sterile mixing angle in the res-

onant production window, and a freeze out temperature & TeV. Provided the post-

inflation reheating temperature is below the TeV scale, then these keV sterile neutrinos

could be WDM produced non-thermally via the usual resonant production mechanism

[186, 339, 7, 106, 107, 357, 284, 110, 163, 353].

As mentioned above, an alternative to non-thermal WDM production is ultra-

relativistic thermal production followed by entropy dilution (see e.g. [89]). This has the

advantage of producing colder WDM than resonant production and can better evade the

Lyman-α bounds. Usually the diluting entropy is produced by the out-of-equilibrium

decay of a sufficiently long-lived heavy particle. In this Note we examine another com-

pelling possibility: The first-order phase transition induced by the confinement of the

hidden sector can also produce significant entropy if there is sufficient supercooling. This

results in thermal keV WDM. We will discuss the details of this mechanism.

7.2 The Composite Dirac Neutrino Model

7.2.1 Setup

The generic theory of interest is a low-energy effective field theory below a scale M . Its

group structure is Gc ⊗ GF ⊗ GSM, with Gc a confining group called ν-color, GSM the SM

gauge groups (or a UV extension), and GF a global (or weakly gauged) hidden flavor

group. The theory consists of three sectors

χ ∼ Gc ⊗GF , ξ ∼ GF , q ∼ GSM ⊗GF , (7.2.1)
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and which interact only via M -scale irrelevant operators. We call χ ‘preons’ and say they

belong to the CHS. Here q denote the SM fields extended to also carry hidden flavor GF,

and we say ξ comprise the ‘extended hidden sector’ (EHS). We assume that the χ and ξ

are purely chiral fermions, but we emphasise that like the SM sector, the χ and ξ may

consist of various different irreps.

The ν-color group confines at a confinement scale Λ � M . Necessarily M � v, the

electroweak scale, so it is convenient to define two parameters

ε ≡ Λ/M � 1 , θ ≡ v/M � 1 . (7.2.2)

Confinement of the CHS produces preonic bound states, which we shall crudely denote

as χp: The superscript denotes the number of preons participating in the bound state.

Formation of a scalar condensate χm with 〈χm〉 6= 0 generically induces a spontaneous

breaking of the hidden flavor group GF → G′F ⊂ GF. This produces a new sub-Λ effective

field theory, which consists of: preonic bound states; ξ and q decomposed into G′F irreps;

and also light ‘hidden pions’. There are three crucial ideas:

(i) If the CHS has non-trivial G′F anomalies, then anomaly matching of the CHS to

its confined phase, with ξ and q acting as chiral spectators, implies that there are massless

bound states after confinement. The remaining bound states generically have masses∼ Λ,

except for the hidden pions.

Hereafter we shall assume G′F = U(1)F, and that there are precisely three massless

bound states all with the same U(1)F charge 1. For simplicity we assume the massless

bound states have the same number of preons, hereafter denoted n, necessarily an odd

integer. We shall suggestively denote these bound states as niR, i = 1, 2, 3 with U(1)F

1In this case decomposition of q under GF → U(1)F could result in multiple copies of SM irreps, also
with the same U(1)F charges, which could be the source of flavor.
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charge F (nR) = +1. Explicit examples of preonic theories capable of producing such

spectra are presented in Ref. [239]. The corresponding sub-Λ EFT that we shall consider

in this Note is shown in Table 7.1.

φ LcL ER Qc
L UR DR nR

F +1 0 −1 0 1 −1 +1

Table 7.1: U(1)F charges assignments to the massless bound states nR and the SM fields
q = {φ,Q, U,D,L,E}, which also have the usual SM charges (not shown). The nR are SM
sterile by construction.

One can check 2Y − F = B − L, so U(1)F is nonanomalous, and the electroweak

symmetry breaking (EWSB) pattern is

SU(2)L ⊗U(1)Y ⊗U(1)F → U(1)EM ⊗U(1)B−L . (7.2.3)

That is, one obtains Dirac neutrinos, with the nR acting as right-handed neutrinos. Note

U(1)F may be gauged, but we assume its gauge coupling and kinetic mixing with the

photon are sufficiently small that they can be neglected.

(ii) For the sub-Λ EFT in Table 7.1, there exist irrelevant operators that couple the

preons of the massless nR – i.e. the Gc singlets χn – to the SM singlet L̄Lφ̃. Such an

operator is generically of form

1

M3(n−1)/2
L̄Lφ̃χ

n → ε3(n−1)/2L̄Lφ̃nR , (7.2.4)

after confinement. That is, this operator produces a suppressed Yukawa in the sub-Λ EFT.

Since nR are massless and there is B − L symmetry (7.2.3), this operator leads to light

Dirac neutrino masses after EWSB, compared to the electroweak scale.
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There may also be other vector-like right-handed fermionic bound states NR and N c
L,

with F (NR,L) = +1 We shall again assume for simplicity they contain n preons. Such

bound states must form Dirac fermions with Λ scale masses, and the NR will generically

also have operators of form (7.2.4). NR,L are therefore Λ-scale sterile Dirac neutrinos.

(iii) Under decomposition into U(1)F irreps, the chiral EHS fields ξ may form real U(1)F

representations and acquire masses. However, because the EHS couples only irrelevantly

to the condensate vev 〈χm〉 responsible for GF → U(1)F, the mass terms must be sup-

pressed. This is the same mechanism which suppresses the quark and lepton masses in

Extended Technicolor theories [198]. Explicitly, for a Dirac fermion ξR,L, such mass terms

arise from operators of the form

1

M (3m−2)/2
ξχmξ → Λε(3m−2)/2ξ̄LξR , (7.2.5)

after confinement 2. If also F (ξR,L) = +1, then there may exist irrelevant operators that

couple the corresponding Gc singlet χmξ to L̄Lφ̃. That is, we could have

1

M3m/2
L̄Lφ̃χ

mξ → ε3m/2L̄Lφ̃ξR . (7.2.6)

Consequently, such a ξR,L forms an elementary sterile Dirac neutrino with naturally sup-

pressed mass ∼ Λε(3m−2)/2. In principle, there may be several species of such a Dirac

neutrino, as well as other EHS fermions with F 6= ±1 that acquire Dirac or even Majorana

masses of the same size.
2There may also be mass cross terms involving ξLNR, for example. However, we assume that such

cross-terms, i.e involving composite and elementary states, are suppressed by the details of the UV theory
above M . An analogous assumption must also be made for the proton decay operator uude.
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7.2.2 Spectrum

We may classify the sub-Λ EFT by a tuple (n,m), where n (odd ≥ 3) is the number of

preons in the sterile neutrino bound states, and m (even ≥ 2) is the number of preons in

the symmetry breaking condensate. After EWSB, from eqs. (7.2.4)–(7.2.6) a (n,m) theory

has neutrino mass term,

Λ


νL

ξL

NL



T 
θε

3n−5
2 θε

3m−2
2 θε

3n−5
2

0 ε
3m−2

2 0

0 0 1




nR

ξR

NR

 , (7.2.7)

where νL is the SM active neutrino. Each entry of this mass matrix denotes the prefactor

of an O(1) sub-block, whose dimensions depends on the number of species of each type

of sterile neutrino. For example, the upper left entry must be 3× 3.

For m ≤ n − 1, the mass spectrum can be determined by expansions in ε and θ. One

obtains at leading order

ml ∼ vε
3(n−1)

2 , md ∼ Λε
3m−2

2 , mh ∼ Λ . (7.2.8)

Here the superscripts l, d and h denote ‘light’, ‘dark’ and ‘heavy’. The left-handed mass

basis is, at leading order in ε and θ,
νlL

νdL

νhL

 ∼


1 θ θε
3n−5

2

θ 1 θ2ε
3n+6m−9

2

θε
3n−5

2 θ2ε
3n−5

2 1




νL

ξL

NL

 , (7.2.9)
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and the right-handed mass basis is
νlR

νdR

νhR

 ∼


1 θ2ε
3(n−m−1)

2 θ2ε3n−5

θ2ε
3(n−m−1)

2 1 θ2ε
3n+3m−7

2

θ2ε3n−5 θ2ε
3n+3m−7

2 1




nR

ξR

NR

 . (7.2.10)

We emphasise that eqs. (7.2.9) and (7.2.10) denote only sub-block prefactors; the entries

of the sub-blocks themselves are generically O(1) numbers.

It is clear from eq. (7.2.9) that the dark-active mixing angle θd ∼ θ. One can then

rearrange eqs. (7.2.8) and (7.2.9) into

mdθd ∼ v

(
ml

v

) m
n−1

,
Λ

md

∼
(
ml

v

) 2−3m
3n−3

, (7.2.11)

in which the right-hand sides are fully specified by (n,m) and the requirement that ml ∼

0.05 eV, v ' 174 GeV. Figure 7.1 shows θd up to O(1) uncertainty as a function of md, with

m = n − 1. Theories with m < n − 1 have much larger mixing angles, and are therefore

ruled out by x-ray flux constraints, so we consider only (n, n− 1) theories henceforth. For

such theories M ∼ 2 × 104(md/5 keV) TeV, and we provide the corresponding Λ and ε in

Table 7.2.

(n,m) Λ× (5 keV/md) (TeV) ε× (5 keV/md)

(3, 2) 1 7× 10−5

(5, 4) 102 8× 10−3

(7, 6) 7× 103 9× 10−2

Table 7.2: Confinement scale Λ and ε for (n, n− 1) theories. Such theories with n > 7 have
ε 6� 1, and are not considered further.

It is amusing to note that for the (n, n − 1) theories md ∼ 5 keV implies sin2(2θd) ∼
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Figure 7.1: Mixing angle sin2(2θd) up to O(1) uncertainty (light gray) as a function of md,
for (n, n− 1) theories. Also shown: The thermal production Lyman-α exclusion (hatched
region, see e.g. [107]); the x-ray flux exclusion for νd energy fraction Ωd = ΩDM (heavy
black line, see e.g. [109, 105]); non-resonant production contours (dashed lines), labelled
by the ratio of energy fractions Ωd/ΩDM [54, 110, 284]; resonant total DM production con-
tours (dash-dotted lines) for lepton asymmetries Y∆L = 8, 12, 16, 25× 10−6 (resp. top to
bottom), and their corresponding Lyman-α lower bounds on the WDM mass (black dots)
[110].

3× 10−10, which matches the (as yet unconfirmed) Chandra results in the Willman I dwarf

galaxy [290].

7.2.3 Dirac vs Majorana

The keV sterile neutrinos in this Note are Dirac, in contrast with the Majorana sterile

neutrinos often considered in other WDM scenarios. The WDM production mechanisms

that we consider below produce dominantly symmetric DM – the resonant production

mechanism requires an asymmetry in the proper number density (nν − nν̄)/nν < 10−2

[7, 357] – so that the DM particles and antiparticles are present in the same abundances to

a very good approximation. The x-ray flux bounds due to sterile neutrinos are therefore

insensitive to the mass structure, since decay modes to the active neutrino and antineu-

trino are present in both cases: I.e, the x-ray flux is due to either N → νγ and N → νcγ
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for a Majorana neutrino N , or νd → νγ and ν̄d → ν̄γ for the present scenario. Similarly,

(non)-resonant production by conversion from the active neutrinos will produce the same

energy densities, regardless of the Dirac or Majorana nature of the masses. We therefore

use existing results for these bounds and processes in Fig. 7.1 without alteration.

7.2.4 Decoupling

Our knowledge of the generic structure of the non-renormalizable operators permits us to

consider the cosmological histories of the CHS and EHS, and therefore determine whether

the νd sterile neutrinos can be a WDM candidate: satisfying the (md, θd) bounds is nec-

essary but not sufficient for this. For the (n, n − 1) theories, we now enumerate various

important processes and their freeze out temperatures, Tfr. We assume the effective de-

grees of freedom at the TeV scale g∗ ∼ 102.

(i) X̄X ↔ Ȳ Y , where X, Y ∈ {q, ξ, χ}. These processes couple the SM, CHS and

EHS. The dimension-5 operator φ†φX̄X is heavily suppressed, since X are all chiral. The

leading operators are then the dimension-6

1

M2
X̄γµXȲ γµY ; Tfr ≤

[
g

1
2
∗M4

Mpl

]1/3

∼ TeV , (7.2.12)

and similarly for φ†∂µφX̄γµX/M2. Note that the current collider constraint on the dark

matter - quark interaction is insensitive to the coupling due to the large mediator mass,

M [328, 207].

(ii) ξ̄RξL ↔ 2Π, where Π denotes the hidden pions. This process is generated by the

non-linear sigma operator

mdξ̄RξLe
iΠ/Λ ; Tfr ≤

[
g

1
2
∗ Λ4

(md)2Mpl

]
∼ TeV , (7.2.13)
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for the (3, 2) theory, and much larger for (5, 4) and (7, 6).

(iii) ν̄dLν
d
L ↔ q̄q. This can occur also through W and Z exchange, and must freeze out

before BBN. The pertinent operators are

g(θd)
2

2cW
ν̄dL /Zν

d
L ,

gθd√
2
ν̄dL /W`L ; Tfr≤

[
g

1
2
∗m4

W

(θd)4Mpl

]1/3

∼ TeV .

(iv) ν̄lLν
l
R ↔ 2Π. This must also freeze out before the BBN epoch. The non-linear

sigma coupling of νlL,R to the hidden pions is suppressed by both the left and right mix-

ing between active and sterile sectors. From eqs. (7.2.9) and (7.2.10) this leads to an extra

prefactor of (θd)
3 for the non-linear sigma operator in eq. (7.2.13), and therefore a decou-

pling much larger than the TeV scale.

7.3 Warm Dark Matter

7.3.1 Non-Thermal WDM

The moral of the above analysis is that approximately below the TeV scale, the SM, CHS

and EHS are decoupled. From Table. 7.2, confinement of the CHS also occurs at latest at

the TeV scale. As a result, we may imagine a scenario in which the post-inflation reheat-

ing temperature Trh < TeV. In this case, the sterile Dirac neutrinos νd might never be in

thermal contact with the SM plasma, and therefore be produced non-thermally through

the (non)-resonant production mechanism [186, 339, 7, 357].

As can be seen in Fig. 7.1, the predicted (md, θd) values fall outside the region of

significant WDM non-resonant production, which itself is ruled out by the combination
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of Lyman-α and x-ray flux bounds [106, 107]. However the (md, θd) ranges still overlap

an allowed window for WDM resonant production if there is a sufficiently large lepton

asymmetry [7, 286, 357, 284, 110].

7.3.2 Thermal WDM

The (3, 2) theory exhibits the interesting feature that the decoupling temperature of the

EHS, Td, the confinement temperature of the CHS, Tc ∼ Λ, and decoupling of temperature

the CHS, Tχ, all occur at the TeV scale. In contrast to the non-thermal resonant scenario,

for a (3, 2) theory one may plausibly consider a scenario in which all three sectors are

initially in thermodynamic equilibrium, the lepton asymmetry is small, and

Td > Tc > Tχ . (7.3.14)

In this scenario, the EHS fermions ξ freeze-out ultra-relativisitically before confine-

ment, and there is no subsequent resonant production. Defining Y ≡ n/s – the ratio of

the comoving number density and entropy density – then for each Dirac ξ species

Yξ =
135ζ(3)

2π4

1

gd∗S
, (7.3.15)

where gd∗S is entropic effective equilibrium number of degrees of freedom at freeze-out.

Even if only one species of ξ – the Dirac ξR,L – obtains a mass md, which we assume

henceforth, such a Yξ leads to over-closure unless gd∗S ∼ 104. This is unnaturally large

since g∗S ∼ 102 for the SM at this scale. However, if after freeze-out the entropy increases

by a factor γ, then the frozen out species are diluted, Yξ → Yξ/γ. The present-day energy

fraction for the Dirac νd, which are an admixture dominantly composed of ξR,L, is then

Ωd

ΩDM

' Yξmds0

ρcΩDM

=
1.1× 104

gd∗Sγ

(
md

5 keV

)
, (7.3.16)
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in which we used s0 ' 2.89 × 103 cm−3, ρc ' 10.5h2cm−3keV, and ΩDM = 0.105h−2. It is

clear that we need gd∗Sγ & 104 for a DM candidate.

7.3.3 Supercooled Confinement

The ordering (7.3.14) permits us to consider the confinement of the CHS as the source

of entropy that dilutes Yξ after freeze-out. The entropy production from a confinement-

induced first-order phase transition can be significant if it occurs suddenly after super-

cooling [171, 161]. That is, if the confinement phase transition (CPT) begins at a cooler

temperature Ti < Tc, and the duration of the transition τc � 1/H(Ti), the Hubble time at

temperature Ti.

Before confinement – at temperature Ti – and after confinement – at temperature Tf >

Tχ –, we suppose that we have equilibrium plasmas. By construction

g∗S(Ti) ≡ gi∗S = gSM
∗S + gc

∗S ' 2× 102 ,

g∗S(Tf ) ≡ gf∗S ≡ gSM
∗S + gbs

∗S ' 102 . (7.3.17)

Here gSM
∗S , gc

∗S and gbs
∗S denote the effective equilibrium relativistic degrees of freedom in the

SM, CHS and the bound states. By construction, for three nR we have gbs
∗S = 2·3·(7/8)+NΠ

withNΠ the number of hidden pions. We have assumed gbs
∗S ∼ 10 and gSM

∗S , g
c
∗S ' 102. Note

that since the frozen out ξL,R have only four degrees of freedom, then gd∗S ' gi∗S .

Since Tf > Tχ, then such entropy production leads to reheating of both the CHS and

SM, before their decoupling at Tχ. This mutual reheating means the present DM temper-

ature, T 0
d , compared to that of the active neutrinos, T 0

ν , is just

T 0
d

T 0
ν

=

(
gf∗S
γgd∗S

gν∗S
gSM
∗S

)1/3

'
(

10.75

1.1× 104(md/5 keV)

)1/3

, (7.3.18)
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from eq. (7.3.16) and since gf∗S ' gSM
∗S . The Lyman-α bounds [107, 89] require md >

8(T 0
d /T

0
ν ) keV. Together with eq. (7.3.18) this implies such thermally produced νd may

safely avoid the Lyman-α bound, provided md > 1.3 keV. This is the Lyman-α bound

displayed in Fig. 7.1.

Note also that the nR and hidden pion contribution to the effective number of neutrino

degrees of freedom, δN eff
ν , at the big-bang nucleosynthesis (BBN) epoch is then

δN eff
ν = (8/14)gbs

∗S

(
gν∗S/g

SM
∗S

)4/3

∼< 0.26(gbs
∗S/10) . (7.3.19)

It is amusing to note that the right-handed neutrinos together with the hidden pions can

supply sufficient effective degrees of freedom at the BBN epoch to significantly contribute

to the observed δN eff
ν ∼ 1 excess (see e.g [275, 83]). In contrast, this is difficult to achieve

with seesaw models, or even ad hoc Dirac neutrino models.

7.3.4 Entropy Production Estimate

The massive bound states typically have masses xΛ, with x & 1, so they are non-

relativistic. Their corresponding widths are generically also Γ ∼ Λ. This leads to

Γ/H(Ti) ∼ Mpl(Tc/Ti)
2/Λ ≫ 1. In contrast, the longest-lived heavy bound state we

could contemplate decays only via exchange of an M -scale boson, like the electroweak

decay of the Λ0 baryon of QCD. In this case, the decay rate is Γ ∼ Λx5ε4. For the (3, 2)

theory ε ∼ 10−4, so that Γ/H(Ti) & x5(Tc/Ti)
2 � 1. This means that even for a sudden

CPT, the heavy bounds states all decay within τc and generically, predominantly produce

hidden pions and nR with energies ∼ Tc. It seems reasonable, then, to treat the CPT as

a quasiequilibrium process, in which the non-relativistic heavy bound states have expo-

nentially suppressed number and energy densities, while pions and nR are thermal with

200



gf∗S

gi∗S

gf ′∗S

ζi ζfζ = (RT )3

a

b

c

d

Figure 7.2: A sketch of the thermal history. Species freeze-out (a-b) along the Si adiabat
(lower dashed), is followed by the CPT (b-c), which is a first-order g∗S phase transition in
ζ . The CPT is followed by thermalization (c-d) along the Sf adiabat (upper dashed) until
g∗S = gf∗S at which T = Tf . Once T = Tχ, the CHS and SM decouple.

temperature Tc.

With this in mind, one can estimate the amount of entropy production by treating the

CPT as a first-order phase transition in g∗S , as a function of ζ ≡ (RT )3. Here R is the

universe scale factor and T the equilibrium temperature. The picture is that confinement

begins at supercooled plasma temperature Ti, and suddenly produces the relativistic pi-

ons and nR at temperature Tc, so that g∗S undergoes a jump at ζi = (RiTi)
3 from gi∗S to

gf ′∗S = gSM
∗S + gbs

∗S

(
Tc/Ti

)3
. (7.3.20)

This expression for gf ′∗S follows just from the definition g∗S(T ) ≡ ∑α g
α
∗S(Tα/T )3, a sum

over species at different temperatures. After the phase transition, the plasma undergoes

an adiabatic thermalization until g∗S = gf∗S and T = Tf . SM-CHS decoupling at Tχ follows

thereafter. Figure 7.2 shows this history.

Provided (Tc/Ti)
3 � gSM

∗S /g
bs
∗S ∼ 10, the entropy production estimate from eq. (7.3.20)

is then

γ ≡ Sf
Si

=
gf ′∗Sζ

gi∗Sζ
' gbs

∗S
gi∗S

(
Tc
Ti

)3

. (7.3.21)
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The important feature of this naı̈ve estimate is the (Tc/Ti)
3 dependence of the entropy

production. A more careful treatment in Ref. [171] produces the result

γ ' 1

r

(
r − 1

3

)3/4(
Tc
Ti

)3

, r ≡ gi∗S
gf∗S

. (7.3.22)

One also finds Tf = [(r − 1)/3]1/4Tc. Using this result and eq. (7.3.16), and fixing r = 2, it

follows that for Ωd ≤ ΩDM (i.e. γgd∗S ≥ 1.1× 104md/5 keV) we require

Tc
Ti
≥ 6.3

(
2× 102

gd∗S

)1/3(
md

5 keV

)1/3

. (7.3.23)

Note Tf = 0.76Tc here, so it is plausible that Tf > Tχ. By comparison to eq. (7.3.23),

the QCD maximal supercooling is Tc/Ti ' 1.7 [171]. However, given that this upper

bound will be sensistive e.g. to the tunneling probabilities between the metastable (GF

symmetric) and stable (G′F symmetric) vacua, the degree of supercooling required in this

estimate is not implausible.

7.4 Conclusions

Within the composite neutrino framework, we have shown in this Note that keV ster-

ile Dirac neutrinos can be naturally produced with mixing angles appropriate for non-

thermal resonant production, provided the composite neutrinos are all comprised of n

preons and the scalar condensate vev has n−1 of them. Alternatively, for a (3, 2) theory, a

single keV sterile Dirac neutrino species could be WDM produced by entropy-diluted ul-

trarelativistic freeze-out. In this latter case the entropy can be provided by a supercooled

confinement-induced phase transition.
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CHAPTER 8

LEP CONSTRAINTS ON DARK MATTER INTERACTIONS

Based on the 2011 article “Missing Energy Signatures of Dark Matter at the LHC”,

written in collaboration with Patrick J. Fox, Roni Harnik, Joachim Kopp and published

in Phys.Rev. D84 (2011) 014028.
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8.1 Introduction

The search for dark matter and its interaction with standard model particles is actively

pursued by experiments worldwide. Direct detection searches look for a feeble kick that

a dark matter particle produces in recoiling off a nucleus. Indirect searches aim at the

detection of the annihilation products of dark matter particles with each other in regions

with a high density of dark matter. A signal in any experiment using either of these

techniques requires the existence of a new interaction between dark matter and standard

model particles. Direct and indirect searches, together with assumptions on the astro-

physical dark matter density and velocity distributions, place bounds on such possible

interactions.

The very same interactions may also lead to the production of dark matter at a high

energy collider (with an appropriate beam of incoming particles). In this article we will

explore possible couplings of dark matter to leptons and the limits on such couplings from

the LEP experiments at CERN. There, the annihilation of an electron and a positron into

an invisible dark matter pair may become visible if an additional hard photon is radiated

during the collision, producing a distinct mono-photon signal. Since the LEP experiments

did not observe an excess of mono-photon events beyond the expected background, a

limit may be placed on the postulated interaction strength between dark matter and the

standard model. These limits, in turn, can be reinterpreted as limits on both direct and

indirect detection rates, independent of astrophysical and atomic uncertainties.

Previous work relating collider searches to direct and indirect searches for dark matter

has focused on the Tevatron [67, 229] and the LHC [230]. While these hadronic machines

probe the dark matter couplings to light quarks, the LEP data we are going to study

is sensitive to the dark matter-electron coupling. The potential limits from ILC mono-
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photons on a thermal relic that couples to leptons was studied in [92]. If dark matter

were hadrophobic, as has been discussed [87, 211, 170] (but disfavored [277, 278]) as a

possible explanation of the DAMA [86] and CoGeNT [3] signals, as well as various cosmic

ray anomalies, the LEP mono-photon searches would provide the only sensitive, model

independent, collider limits for dark matter. As we shall see, LEP searches can yield

bounds on dark matter which are both competitive with, and complementary to, those

placed by traditional dark matter searches.

The plan of this paper is as follows. In the next section we will introduce the effective

theory formalism we will use in the first part of the paper. The list of operators we are go-

ing to consider will not be exhaustive, but will encompass the phenomenologically most

relevant scenarios. We include cases where the dark matter-lepton couplings are scalar,

vector and axial-vector in nature1 which covers a broad range of phenomena, including

spin independent and spin dependent scattering as well as annihilations which are either

velocity suppressed or not. In section 8.3 we will set limits on the various contact opera-

tors from the mono-photon search at LEP. Then, in sections 8.4 and 8.5 we will translate

our limits into bounds on dark matter nucleon scattering and dark matter self annihila-

tion, respectively. We will compare our results to current direct and indirect searches. In

section 8.6 we will consider the possibility that the effective theory described in section 8.2

is not appropriate for calculating the production rate of dark matter pairs at LEP. We will

discuss several renormalizable models in which a new gauge boson or a new scalar parti-

cle is introduced to mediate the interactions of dark matter with leptons. As we shall see,

the inclusion of such particles can significantly alter LEP bounds, and in certain regimes

the bounds become sensitive to the details of the UV completion. We will conclude in

section 8.7.
1Throughout we consider the dark matter to be a Dirac fermion, since our bounds would not be altered

significantly if dark matter is a Majorana fermion [230, 67, 229]. We also do not consider scalar or vector
dark matter, though we do not expect the limits to be qualitatively different.
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8.2 The Interaction of Dark matter with Leptons

In order to produce dark matter at LEP it must couple to electrons. In many models this

may occur via the exchange of a heavy mediator that can be integrated out of the theory at

low energies. In that case one can describe the phenomenology in an effective field theory

with higher dimension operators coupling the dark matter particle χ to standard model

leptons ` = e, µ, τ . This allows us to consider a large variety of dark matter phenomena

without committing to a particular high energy framework2. We will be considering the

operators

OV =
(χ̄γµχ)(¯̀γµ`)

Λ2
, (vector, s-channel) (8.2.1)

OS =
(χ̄χ)(¯̀̀ )

Λ2
, (scalar, s-channel) (8.2.2)

OA =
(χ̄γµγ5χ)(¯̀γµγ5`)

Λ2
, (axial vector, s-channel) (8.2.3)

Ot =
(χ̄`)(¯̀χ)

Λ2
, (scalar, t-channel) (8.2.4)

which capture the essential dark matter and collider phenomenology (e.g. spin depen-

dent and spin independent scattering on nucleons as well as s- and p- wave annihilation).

The classification of these operators as s-channel or t-channel refers to their possible UV-

completion: (8.2.1)–(8.2.3) are most straightforwardly obtained in models in which dark

matter is produced at LEP through a neutral s-channel mediator, while eq. (8.2.4) arises

most naturally if the mediator is a charged scalar exchanged in the t-channel. With such a

UV completion in mind, the suppression scale Λ can be interpreted as the mass of the me-

diator M , divided by the geometric mean of its couplings to leptons, g`, and dark matter,

gχ: Λ = M/
√
g`gχ. Note that we assume lepton flavor to be conserved in the dark matter

interaction. LEP can only constrain couplings to electrons, ` = e, and in principle the

2Indeed, several recent studies have used effective theories to analyze and draw connections among
dark matter experiments [245, 120, 119, 29, 197].
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suppression scale Λ could be different for couplings to µ and τ leptons. In the following

discussion, we will therefore consider both scenarios in which dark matter couples only to

electrons (i.e. Λ =∞ for ` = µ, τ ) and scenarios in which dark matter couples in a flavor-

universal way to all standard model leptons. Note that the last operator, eq. (8.2.4), may

be transformed into a linear combination of the first three operators, plus pseudoscalar

and tensor contributions, using the Fierz identities, but we include it separately here be-

cause it is a common outcome of supersymmetric theories.

The effective theory described by equations (8.2.1)–(8.2.4) is always a valid description

of processes with low momentum transfer, in particular dark matter-nucleon scattering

in direct detection experiments. In high energy processes such as dark matter production

at LEP or dark matter annihilation, the effective theory breaks down if the 4-momentum

transfer is comparable to or larger than the mass of the particle mediating the interaction.

In the first part of our analysis in sections 8.3–8.5, we assume that this is not the case, and

derive bounds on the operators (8.2.1)–(8.2.4) from LEP mono-photon searches, which

we will then translate into constraints on direct and indirect dark matter detection cross

sections. In section 8.6 we will investigate how these bounds change if the mediator

of dark matter interactions is light so that an effective theory description is no longer

possible.

8.3 LEP Limits on the effective Dark Matter–electron coupling

In this section we will consider the operators (8.2.1)–(8.2.4) and derive limits on their sup-

pression scale Λ from mono-photon searches at LEP. While all four LEP-detectors have

studied single photon events [241], we will here focus on data from the DELPHI experi-

ment [9, 10], for which we were best able to simulate the detector response. The data was
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Figure 8.1: Distribution of normalized photon energy in single-photon events at DELPHI.
The agreement between the data (black dots with error bars) and both the full DELPHI
Monte Carlo (solid yellow/light gray shaded histogram) as well as our CompHEP simu-
lation (dotted histogram) is excellent. The blue shaded histogram shows what a hypothet-
ical Dark Matter signal from e+e− → γχ̄χ would look like. We have assumed vector-type
contact interactions between electrons and dark matter, mχ = 10 GeV, and Λ = 300 GeV,
see eq. (8.2.1). The peak at xγ ∼ 0.8 corresponds to the process e+e− → γZ0 → γνν̄, with
an on-shell Z0.

taken at center of mass energies between 180 GeV and 209 GeV, but since in the analysis

the events are characterized only by the relative photon energy xγ = Eγ/Ebeam, we can

make the simplifying assumption that all data was taken at an energy of 100 GeV per

beam. We have checked that the error introduced by this approximation is small. For our

Monte Carlo simulations, we use CompHEP [102, 326], which allows us to include the ef-

fect of initial state radiation (ISR) which we find to be non-negligible. For example, we are

only able to reproduce the height and width of the on-shell Z0 peak in the xγ distribution

for the background process e+e− → γνν̄ (cf. Figure 8.1) if ISR is included.

To analyze the event samples generated in CompHEP, we use a modified version of

MadAnalysis [34], in which we have implemented the analysis cuts and efficiencies of the
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DELPHI analysis as well as energy smearing according to the resolution of the DELPHI

electromagnetic calorimeters. In doing so, we closely follow ref. [9].

In DELPHI, central photons with a polar angle θ (with respect to the beam axis) in

the range 45◦ < θ < 135◦ are detected in the High Density Projection Chamber (HPC)

with a threshold of xγ > 0.06. We assume the trigger efficiency for photons in the HPC to

increase linearly from 52% at Eγ = 6 GeV to 77% at 30 GeV, and then to 84% at 100 GeV.

The trigger efficiency is multiplied by the efficiency of the subsequent analysis, which we

assume to increase linearly from 41% at 6 GeV to 78% at 80 GeV and above.

For photons with 12◦ < θ < 32◦, detected in the Forward Electromagnetic Calorimeter

(FEMC), the threshold is xγ > 0.1. The trigger efficiency increases linearly from 93%

at 10 GeV to 100% at 15 GeV and above, and the analysis efficiency is the product of a

linear function, increasing from 57% at 10 GeV to 75% at 100 GeV, and a constant 89%,

with the first factor coming from the analysis cuts, and the second one describing the

loss of events due to noise and machine backgrounds. In addition, we impose an energy

dependent angular cut θ > (28− 80xγ)
◦.

Very forward photons (3.8◦ < θ < 8◦) give a signal in the Small Angle Tile Calorimeter

(STIC), whose threshold is xγ > 0.3, and we assume the efficiency to be 48%, based on the

(incomplete) information given in [9]. We again impose an energy dependent angular cut

θ > (9.2− 9xγ)
◦.

The above, calorimeter specific, efficiencies are augmented by an additional 90% ef-

ficiency factor, applied to all photons. We found it necessary to introduce this overall

efficiency factor to gain agreement in normalization between our simulations and the re-

sults of DELPHI.

209



The relative energy resolution, σE/E, is 0.043⊕ 0.32/
√
E in the HPC, 0.03⊕ 0.12/

√
E ⊕

0.11/E) in the FEMC, and 0.0152⊕ 0.135/
√
E in the STIC, whereE is in units of GeV. Here

⊕means that the different contributions to the energy resolution function are statistically

independent. For example, we simulate the effect of finite energy resolution in the HPC

by shifting the energy of each HPC photon by an amount 0.043E ·r1+0.32
√
E ·r2, where r1

and r2 are independent Gaussian random numbers. Since we find that with purely Gaus-

sian energy smearing we are unable to reproduce the broad tails of the on-shell Z0 peak

in the xγ distribution (Figure 8.1), we impose an additional Lorentzian energy smearing

with a width of 0.052E. This is motivated by a fit to the calorimeter response to monoen-

ergetic electrons, obtained from ref. [200].

We have verified our modeling of the DELPHI detector by simulating the energy dis-

tribution of single photons in the Standard Model. As demonstrated in Figure 8.1, the

agreement with the data (black dots with error bars) and with the DELPHI Monte Carlo

simulation (solid yellow/light gray histogram) is excellent. Only in the very last bin

(xγ > 1), the observed number of events is ∼ 4σ higher than the prediction by both Monte

Carlo simulations, probably due to imperfect modeling of the detector resolution func-

tion. We therefore omit this bin in the following analysis. A straightforward χ2 analysis

then yields χ2/dof = 21.5/19 for our simulation, and χ2/dof = 20.6/19 for the DELPHI

Monte Carlo.

When setting limits on dark matter properties, we use our own simulation only for the

signal contribution, while the predicted backgrounds are taken from the DELPHI Monte

Carlo. The blue shaded histogram in Figure 8.1 shows what a typical dark matter signal

would look like for the case of operator OV , with a dark matter mass of 10 GeV and

with Λ = 300 GeV. Since most of the signal events are in the low-xγ region, where SM

backgrounds are only moderate, and since the spectral shape of the signal is different from

210



90% C.L.

0 20 40 60 80 100
0

100

200

300

400

500

WIMP mass mΧ @GeVD

C
ut

of
f

sc
al

e
L

@G
eV

D

ΧΓΜΧ eΓΜe

ΧΓ Μ
Γ 5

Χ eΓ
Μ Γ 5e

Χ Χ ee

Χe e Χ

Figure 8.2: DELPHI lower limits on the cutoff scale Λ of the dark matter effective the-
ory for the four operators eqs. (8.2.1)–(8.2.4) as a function of the dark matter mass. The
wiggles in the plot are due to limited Monte Carlo statistics.

that of the background, we expect good sensitivity to the dark matter-electron coupling

Λ−1.

Indeed, a χ2 analysis yields limits on the cutoff scale Λ of order 250–500 GeV for dark

matter masses mχ ∼< 80 GeV (see Figure 8.2). In this mass range, our limits on dark

matter-electron coupling are slightly better than the limits on dark matter-quark cou-

plings derived from Tevatron mono-jet events [229, 67]. The Tevatron limits, however,

do not yet include spectral information, and they extend to dark matter masses of several

hundred GeV, while LEP is completely insensitive to mχ & 90 GeV for kinematic rea-

sons. The normalized photon energy distribution is similar in shape for all the operators

considered. This leads to similar limits on the operators from eqs. (8.2.1)–(8.2.3) at low

dark matter mass. Only the limit on the strength of the operator (χ̄`)(¯̀χ), eq. (8.2.4), is

somewhat weaker. Using the Fierz identities this operator may be converted to a sum of

other operators involving a product of a dark matter bilinear and a lepton bilinear. There

is destructive interference between these operators leading to a smaller production cross
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section for mono-photon events and thus a weaker bound on the cutoff scale for this op-

erator. When the dark matter massmχ exceeds∼ 30 GeV, the limits on different operators

scale differently with mχ since at this point the dark matter particles are produced closer

to threshold and the detailed dependence of the cross section on the final state velocities

becomes important.

8.4 Limits on the Dark Matter–nucleon scattering cross section

The next step is to translate the limits on Λ into constraints on the dark matter-nucleon

scattering cross sections probed in direct detection experiments. Since LEP can only probe

dark matter-electron couplings, while direct detection experiments are most sensitive to

dark matter-quark couplings, this translation cannot be done in a completely model-

independent way. We thus consider two extreme possibilities, one in which the dark

matter couples with equal strength to quarks as it does to leptons, and another in which

dark matter couples only to leptons without coupling to quarks at tree level. Limits on

other models, in which the ratio of lepton and quark couplings is different (e.g. coupling

proportional to B−L), may be easily derived from these two cases, as we shall see below.

In order to compute the dark matter scattering cross section off a nucleon, N = p, n,

through one of the operators in (8.2.1)–(8.2.4), we need knowledge of the nucleon matrix

elements 〈N |O|N〉. We use the values of these matrix elements presented in [67], with

the exception of 〈N |q̄q|N〉 in which we follow [193] but use an updated [359] value of

the pion-nucleon sigma term ΣπN = 55 MeV. 3 As mentioned earlier Ot can be converted

from a “t-channel” operator to a sum of “s-channel” operators by use of Fierz identities.

3Note however that recent lattice determinations [358, 349, 223, 41] of the strange quark content of the
nucleus are considerably lower. The effect on our bounds, assuming equal coupling to all fermions, is small.
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Figure 8.3: DELPHI upper limits (thick lines) on the cross section for dark matter-nucleon
scattering compared to results from direct detection experiments (thin lines and shaded
regions). The left-hand plot is for spin-independent scattering, as would come from op-
erators OS , OV , Ot, and the right is for spin-dependent scattering through operator OA.
The spin-independent limits of CDMS and XENON-100 are taken from Refs. [30] and [43],
respectively. The spin-dependent limits of DAMA, XENON-10, PICASSO, COUPP and
SIMPLE are taken from Refs. [86], [38], [71], [76] and [224], respectively. The DAMA and
CoGeNT-allowed regions are based on our own fit [279] to the data from Refs. [86] and
[3]. Following [247], we have conservatively assumed large systematic uncertainties on
the DAMA quenching factors: qNa = 0.3 ± 0.1 for sodium and qI = 0.09 ± 0.03 for io-
dine. All limits are computed at the 90% confidence level, while the DAMA and CoGeNT
allowed regions are shown at the 90% and 3σ confidence levels.

Due to the relative size of the nucleon matrix elements it is sufficient to keep only the

scalar s-channel contribution, which has a coefficient 1/4. Thus, for equal cutoff scale Λ,

the direct detection rate expected from the operator Ot is the same as that expected from

OS/4.

First we assume that the coupling of dark matter to all SM fermions, and in particular

to all flavors of quarks, is identical to its couplings to electrons. In this case, the LEP bound

on Λ can be immediately converted into an upper bound on the rate expected at direct

detection experiments. We show these bounds in Figure 8.3 and we see that the limits on
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spin-independent WIMP-nucleon scattering (left-hand plot) are competitive with direct

detection results only for very light dark matter, mχ ∼< 4 GeV. The direct detection ex-

periments become insensitive to such light masses due to their energy threshold, whereas

there is no such low mass threshold at LEP. The high mass cutoff at LEP is reflected in

the rapid deterioration of the upper bound at mχ ∼ 90 GeV. The LEP bound also applies

directly to inelastic dark matter [350], since the splitting between the two dark matter

states of ∼ 100 keV is inconsequential to the kinematics at LEP. However, such models

typically require considerably larger dark matter-nucleon cross sections than elastic dark

matter, since the splitting allows only the high velocity fraction of the dark matter to scat-

ter. Our bounds derived from LEP rule out the very highest scattering cross sections in

the parameter space consistent with DAMA [279], but still leave the bulk of the parameter

space allowed.

For spin-dependent scattering we expect the LEP bounds to be more competitive since

there is little variation in the bound on Λ between the operators responsible for spin-

independent scattering (OV and OS) and spin-dependent scattering (OA), whereas con-

straints from direct detection experiments are much weaker than in the spin-independent

case. The reason for this is that, unlike spin-independent dark matter-nucleus scattering,

spin-dependent scattering is not enhanced by a factor A2, where A is the nuclear mass

number. These considerations are reflected in the right-hand plot of Figure 8.3 where the

LEP limits surpass direct detection constraints for mχ ∼< 80 GeV at which point the phase

space for dark matter production at LEP again starts to shrink.

If dark matter does not couple to quarks at tree level, but only to leptons (for simplicity

we assume the coupling to µ and τ is the same as that to e, our conclusions are not sig-

nificantly altered even if the coupling were only to electrons), the power of the LEP limits

improves dramatically. The reason is that in this case, dark matter-quark scattering to
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Figure 8.4: Diagram for vector-type dark matter-proton scattering at the one-loop level.

which direct detection experiments are sensitive is only induced at the loop-level [277].4

The cross section for loop-induced dark matter-proton scattering through the diagram

shown in Figure 8.4 is

σ1−loop '
4α2µ2

p

182π3Λ4
·
[ ∑
`=e,µ,τ

f(q2,m`)
]2

, (8.4.5)

where α is the electromagnetic fine structure constant, µp = mpmχ/(mp + mχ) is the dark

matter-proton reduced mass, and the loop factor f(q2,m`) is given by

f(q2,m`) =
1

q2

[
5q2 + 12m2

` + 6(q2 + 2m2
`)

√
1− 4m2

`

q2
arcoth

(√
1− 4m2

`

q2

)
− 3q2 log

[
m2
`/Λ

2
ren

]]
.

(8.4.6)

We take the renormalization scale Λren to be equal to Λ. Moreover, we make the ap-

proximation that all the dark matter is moving at the local escape velocity, which we take

to be vχ = 500 km/sec, and that the momentum exchanged in the scattering is maximal,

i.e. the scattering angle is 180◦ in the center-of-momentum frame. This will overestimate

the rate of observed recoils at a direct detection experiment and will lead to a conserva-

tive upper bound. With these assumptions the four-momentum exchanged between the
4Dark matter-electron scattering is irrelevant in all direct detection experiments including DAMA [277]

and CoGeNT [278]. Even though DAMA and CoGeNT would not reject bulk electron recoils as background,
kinematics dictates that the recoil energy can only be above the detection threshold if the electron enters
the interaction with an initial state momentum & 10 MeV. The probability for this is very small due to the
fast drop-off of the electron wave functions at high momentum [87, 277, 278].
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dark matter and the target nucleus is q2 = −4µ2v2
χ, where µ is the invariant mass of the

dark matter particle and the target nucleus.

The bounds on dark matter-nucleon cross sections quoted by direct detection experi-

ments are derived from the actually measured dark matter-nucleus cross sections under

the assumption that the dark matter couples equally to protons and neutrons and that

the cross section is independent of q2. Here, however, it only couples to protons and

there is a q2 dependence in the loop factor f(q2,m`). Thus, to enable a straight compar-

ison, we rescale the quoted bounds on σp by A2/Z2 × (
∑

` f(q2
p,m`)/

∑
` f(q2/m`))

2, with

q2
p = −4µ2

pv
2
χ; and we take Λren = 500 GeV, the result is only very weakly sensitive to

this choice. Note that (8.4.5) and (8.4.6) are only approximations in the effective theory

formalism. The exact form of the loop factor depends on the embedding of the effective

theory into a complete renormalizable model.

In Figure 8.5 we show the LEP bounds on dark matter in the absence of tree-level

couplings to quarks. Since loop-induced dark matter-nucleon scattering is forbidden

for axial-vector interactions and suppressed by two loops for s-channel scalar interac-

tions [277], we consider only the vector-type operator OV and the scalar t-channel op-

erator Ot. As before, we apply the Fierz identity to Ot to decompose the operator into a

linear combination of s-channel operators, of which we keep only the vector contribution.

As is apparent from Figure 8.5, an explanation of the DAMA and/or CoGeNT signal by a

dominantly leptophilic dark matter candidate which couples to nuclei only through loops

is ruled out by LEP.

Here we only considered two benchmark cases, where dark matter couples univer-

sally to SM fermions and when it couples only to leptons. Constraining a more general

theory with a particular ratio of quark to lepton couplings, Rq/l, is straightforward. In
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Figure 8.5: DELPHI upper limits on the cross section for spin-independent dark matter–
nucleon scattering for the case of dark matter with tree level couplings only to electrons,
but loop level couplings also to quarks, compared to results from the direct detection ex-
periments DAMA [86], CoGeNT [3], CDMS [30], and XENON-100 [43]. The DAMA and
CoGeNT allowed regions are based on our own fit [279] to the data from refs. [86, 3]. We
conservatively assume qNa = 0.3± 0.1 and qI = 0.09± 0.03 for the DAMA quenching fac-
tors. All limits are computed at the 90% confidence level, while the DAMA and CoGeNT
allowed regions are shown at the 90% and 3σ confidence levels.

this more general case nuclear recoil proceeds via both mechanisms, direct couplings to

quarks and via a lepton loop. The limit on the former may be obtained by rescaling the

bounds of Figure 8.3 by R2
q/l, whereas the limit on the latter may be taken directly from

Figure 8.5. Generically one of these limits will dominate the other over the full dark mat-

ter mass range, and the less constraining bound should be taken.

8.5 Limits on the Dark Matter annihilation cross section

The LEP constraints on the suppression scale Λ of the effective dark matter couplings can

also be converted to an upper bound on the annihilation cross section of dark matter into
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an electron-positron pair. They can then be compared to results from astrophysical probes

of dark matter annihilation. Moreover, if dark matter is a thermal relic and if annihilation

into electrons and positrons is the dominant annihilation channel, a lower bound on the

dark matter abundance in the universe can be derived. If dark matter has also other

annihilation modes, this bound is weakened by a factor 1/BR(χ̄χ→ e+e−).

In order to translate the LEP constraints on the coupling strength Λ−1 into limits on

dark matter annihilation, we need to calculate the annihilation cross sections correspond-

ing to the operators in equations (8.2.1)–(8.2.4). For annihilation into a single single lepton

flavor of mass m`, they read

σSvrel =
1

8πΛ4

√
1− m2

`

m2
χ

(m2
χ −m2

`) v
2
rel , (8.5.7)

σV vrel =
1

48πΛ4

√
1− m2

`

m2
χ

(
24(2m2

χ +m2
`) +

8m4
χ − 4m2

χm
2
` + 5m4

`

m2
χ −m2

`

v2
rel

)
, (8.5.8)

σAvrel =
1

48πΛ4

√
1− m2

`

m2
χ

(
24m2

` +
8m4

χ − 22m2
χm

2
` + 17m4

`

m2
χ −m2

`

v2
rel

)
, (8.5.9)

σtvrel =
1

192πΛ4

√
1− m2

`

m2
χ

(
24(mχ +m`)

2 +
(mχ +m`)

2(8m2
χ − 16mχm` + 11m2

`)

m2
χ −m2

`

v2
rel

)
.

(8.5.10)

Here, we have made an expansion up to second order in the relative velocity vrel of the

annihilating particles. While vrel � 1 in all relevant astrophysical and cosmological en-

vironments, its exact value ranges from vrel ∼ 0.1 at the time of dark matter decoupling

in the early universe (if dark matter is a thermal relic) to values of order vrel <∼ 10−4 (less

than 100 km/s) in dwarf galaxies (see Appendix D). This large spread of relative veloci-

ties can have a large effect on annihilation rates for certain operators. Notably, annihila-

tion through an s-channel scalar operator, (8.5.7) is suppressed by v2
rel, and annihilation

through an s-channel axial vector operator, (8.5.9) is suppressed by v2
rel or by m2

`/m
2
χ com-

pared to the other modes. The production cross section at LEP is not suppressed in either
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of these cases, giving our bounds on the suppressed modes a substantial relative advan-

tage compared to indirect searches. However, we will see that even in cases where the

annihilation rate is unsuppressed the LEP bounds are interesting and competitive for

light dark matter.

In Figure 9.6, we consider both annihilation in the early universe and annihilation

in the Draco dwarf galaxy5 and compare to the cross section required for a thermal

relic ( eVσv ≈ 3 × 10−26 cm3/s) and to several astrophysical bounds. Our most model-

independent bounds, those on annihilation into e+e−, are shown in the top left panel of

Figure 9.6, where we take eVv2
rel = 0.24, corresponding to thermal freeze-out. We see

that, if the dark matter only annihilates to electron-positron pairs, the thermal relic cross

section is ruled out by LEP at 90% C.L. if mχ ∼< 20 GeV for vector interactions, and if

mχ ∼< 50 GeV for scalar and axial vector interactions. Thus, in order for such dark matter

to be a thermal relic it must have additional annihilation modes.

Even though model-independently LEP can only constrain the dark matter coupling

to electrons and hence the annihilation cross section for the process χ̄χ → e+e−, in many

models of dark matter the annihilation rate into electrons is either equal or not very far

from that into µ and τ . For example, in models of supersymmetry the annihilation rate

into charged leptons is set by the slepton masses, which in many cases differ by less than

an order of magnitude. In other models, such as universal extra dimensions the annihila-

tion rates to electrons, muons and taus are identical.6 In order to present our results we

pick the simple benchmark in which the operator strengths are universal among charged

leptons. Constraints on other models may be derived from this benchmark by the ap-

propriate rescaling. Limits on this benchmark scenario are presented in the upper right,
5We chose the Draco dwarf galaxy because it is the dwarf galaxy for which Fermi-LAT obtains the

strongest bounds on dark matter annihilation [11].
6In models of universal extra dimensions, dark matter is usually a vector particle, a case we are not

considering in this work.
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lower left, and lower right panels of Figure 9.6. Due to the strong dependence of eVσv

on the charged lepton mass for axial vector interactions, the limit on the combined cross

section for annihilation into all charged lepton species becomes significantly stronger be-

low the τ threshold in this case. In the lower left panel of Figure 9.6, we compare the LEP

limits to constraints from Fermi-LAT observations of the Draco dwarf galaxy in gamma

rays [11].7 For mχ ∼< 80 GeV, LEP is superior to Fermi for all annihilation operators con-

sidered here, especially for scalar interactions, for which eVσv is proportional to eVv2,

which is extremely small in a dwarf galaxy (see Appendix D).

In the lower right panel of Figure 9.6, we have compiled several constraints on dark

matter annihilation in our galaxy. Since the dark matter velocity distribution, especially

at the galactic center is very uncertain, we include only the predictions for annihilation

through the operators OV and Ot which is eVv2
rel-independent and not suppressed by

the small lepton masses. Limits on annihilation through the axial vector operator OA or

the scalar operator OS will be between the corresponding constraints at freeze-out and

those from the Draco dwarf galaxy and thus much stronger than the limits on vector

interactions. Comparing the LEP constraint to limits from astrophysical observations, we

find that the LEP limit is superior to Fermi results on gamma rays from dwarf galaxies [11]

and on the high energy e+e− spectrum [233]. We also find that the excess in gamma

rays at the galactic center which has recently been argued [249] to plausibly arise from

dark matter annihilations into τ leptons is also strongly constrained, if the annihilation

proceeds into electron-positron pairs at a similar rate. In fact, in [249] it was argued that

an equal annihilation rate into electrons is favored because it may potentially provide an

7The Fermi-LAT collaboration presented their results as limits on the annihilation mode χ̄χ → µ+µ−,
assuming that this is the only annihilation channel. We have reinterpreted these limits, assuming that the
branching ratio for the µ+µ− mode is 1/3 and that the γ-ray production is equal for all lepton flavors. In
reality this will not be true, in particular there will be additional hard photon production for the τ final
state. A reanalysis of Fermi-LAT data including gamma rays from annihilation channels other than µ+µ−

could improve the limits by an O(1) factor.
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explanation of the WMAP Haze [202].

Constraints on dark matter properties from both indirect and direct observations are

sensitive to the abundance, and velocity distribution, of dark matter both locally, at the

center of the galaxy and in sub-halos. There are considerable uncertainties in all these

quantities [209] that effect the exclusion curves, and preferred regions in Figure 9.6. We

emphasize that the LEP constraints do not suffer from these astrophysical uncertainties.

8.6 Constraints on theories with light mediators

So far we have worked in a regime where the dark matter is the only particle of the dark

sector accessible at colliders [79] and as a result all couplings of dark matter to the stan-

dard model are through higher dimension contact operators. However, since LEP is a

high energy machine, there is a possibility that the particle that is mediating the inter-

action of dark matter with electrons is light enough to cause significant deviations from

the mono-photon rates and spectra predicted by the effective theory. These deviations

will be most pronounced when the mediator is produced on-shell and then decays to a

dark matter pair, but as we shall see, order one deviations are possible even without on-

shell production. We therefore also consider LEP bounds for several renormalizable “UV

completions” of our effective theory.

Possible renormalizable theories that couple dark matter with the standard model fall

into two general categories, which we will dub “s-channel” and “t-channel” mediators.

In the first case the mediator is a neutral boson which has coupling vertices to e+e− and

to dark matter pairs. In this case the mediator may be almost arbitrarily light if its cou-

plings with matter are sufficiently feeble. Of the operators we consider here, s-channel
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mediators give rise to operators of the form of (8.2.1)–(8.2.3) at low energies. In the second

case dark matter is produced at colliders via a t-channel diagram, exchanging a charged

mediator. The canonical example is supersymmetry where neutralino dark matter may

be produced at LEP by exchanging a scalar selectron. At low energies this gives rise to the

operator (8.2.4). Since the mediator is charged in this case, its mass should exceed about

110 GeV to evade direct LEP bounds.

In cases where the momentum flowing through the mediator in collider environments

is of order the mediator mass M , the momentum-dependence of the propagator has to be

taken into account. In particular, the amplitude will be proportional to

A ∝ ge gχ
1

q2 −M2 + iM Γ
, (8.6.11)

where q is the 4-momentum carried by the mediator, ge (gχ) is the coupling of the mediator

to electrons (dark matter) and Γ is the total width of the mediator. In the case of an s-

channel mediator q2 = s − 2
√
sEγ is positive, while in the t-channel case q2 is negative

and depends on the relative momentum between the two dark matter particles. In the

previous sections, where the massive mediator could effectively be integrated out, the

higher dimension operators were suppressed by a scale Λ. For the light mediator the LEP

constraints become bounds on the geometric mean of the couplings ge and gχ, but for ease

of comparison we can still formally define

Λ ≡ M
√
ge gχ

, (8.6.12)

and quote the bounds in terms of that quantity.

If the mediator and the dark matter are light enough to be produced on-shell at LEP,

the bounds become sensitive to the width of the mediator Γ. Γ in turn depends on ge, gχ

(and possibly on the couplings to other particles). Here, we will treat Γ as a free parameter,
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but we note that, for any given value of√ge gχ (the quantity constrained by LEP), we can

derive a lower limit Γmin on Γ by noting that

Γ =
g2
χ

24π
M

√
1− 4m2

M2
(1 + 2

m2

M2
) +

g2
e

24π
M + . . . (8.6.13)

The first term comes from decay into dark matter, the second one from decay into elec-

trons, and ‘. . . ’ stands for possible additional decay modes. For fixed √ge gχ the width

is minimized if ge ≈ gχ, and if e+e− and χ̄χ are the only allowed decay modes. If the

latter assumption is true we can also place an upper bound on Γ by setting ge = 4π and

gχ = M2/(geΛ
2
lim) in (8.6.13), where Λlim is minimum value of Λ allowed by LEP. In what

follows we will take the mediator’s width to be a free parameter and will consider the

effects of Γmin ≤ Γ ≤ 1 GeV. For dark matter coupling through a t-channel mediator, no

resonant enhancement is possible, so the value of Γ is irrelevant in this case.

The limits on Λ = M/
√
gegχ for various interactions are presented in Figure 8.7. From

(8.6.11), we can understand the behavior of the dashed and dotted lines in this figure.

Consider first the s-channel case for mχ > M/2: There is no possibility of resonant pro-

duction, so the mediator width is unimportant. Comparing the cross sections for dark

matter production at LEP in the contact operator and light mediator cases, we obtain

dσ

dEγ

∣∣∣
light mediator

=
M4

(q2 −M2)2

dσ

dEγ

∣∣∣
contact op.

. (8.6.14)

with q2 = s− 2
√
sEγ . Thus, for M slightly below

√
s, there is partial cancellation between

the q2 and M2 terms in the denominator, leading to an enhanced cross section and an

improvement in the limit on Λ compared to the contact operator case. For even smaller

M , this cancellation is smaller and we expect the bound on Λ to scale with M . This is

confirmed by Figure 8.7.

On the other hand, if 2mχ < M <
√
s, the process e+e− → γχ̄χ can proceed through

an on-shell mediator, which leads to a peak in the monophoton spectrum reflecting the
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kinematics of a 2 → 2 scattering process. The absence of a strong peak in the DELPHI

data, apart from standard model Z production, places a strong constraint on this scenario.

The constraint depends sensitively on the width of the mediator and scales as

Λ ∝ 1/Γ1/4 . (8.6.15)

This can be understood if we note that the resonant cross section for production of the

mediator together with a single photon contains a factor

1

Λ4

1

(Eγ − Eres)2 + Γ2/4
, (8.6.16)

where Eres is the energy of the peak in the monophoton spectrum. Integrating (8.6.16)

over the photon energy Eγ , we find that the total cross section for on-shell production of

the mediator is proportional to 1/Λ4Γ (times factors that do not depend on Λ or Γ), which

explains equation (8.6.15). We have also confirmed the scaling of the bound on Λ with

Γ−1/4 numerically.

Going back to Figure 8.7 and comparing the limits on Λ obtained for different types

of operators—scalar, vector, and axial vector—we find that they are all comparable. The

t-channel case is similar to the case of the s-channel away from resonance, except that

the negative q2 causes the denominator in equation (8.6.14) to be always larger than the

numerator, meaning that the bound on Λ is always weaker in the light mediator case than

for the contact operator. Furthermore, in the t-channel case there is obviously no on shell

production of a mediator at low dark matter mass.

Even though the effective theory is not appropriate to describe production at LEP, it is

still a good description of dark matter-nucleus scattering in direct detection experiments,

where the exchanged momentum is very low. The procedure of translating our bound

into direct detection limits is identical to that of Section 8.4. We present these bounds in
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Figure 8.8, making the assumption that dark matter has equal couplings to all standard

model quarks and leptons.

For non-resonant dark matter production (s-channel with 2mχ > M or t-channel), the

presence of the light mediator in general severely weakens the LEP bounds on the direct

detection cross section. As discussed below equation (8.6.14), however, there is a window

of mediator masses where the bounds are marginally improved compared to the contact

operator case. If the mediator can be produced on-shell and is sufficiently narrow, the

bounds on direct detection rates are strengthened considerably. In this case, the LEP con-

straints cover the (low mass) DAMA and CoGeNT-favored regions; for the vector opera-

tor a narrow resonance even impacts the DAMA region around mχ ∼ 50 GeV. However,

we should emphasize again that these conclusions can be evaded if the coupling of dark

matter to electrons is much smaller than its coupling to quarks.

Finally, we carry out a similar analysis to Section 8.5 and compute the annihilation rate

in the early universe in the case of a light mediator. We consider only the case where the

mediator couples exclusively to electrons and dark matter. Figure 8.9 shows that the LEP

constraints on dark matter annihilation in the early universe change significantly if the

mediator is light. The sharp peaks that occur at mχ(1 + 〈v2〉/2) ≈M/2 are due to resonant

annihilation of dark matter, and the dips observed just above the peaks are due to the fact

that resonant annihilation and the on-set of resonant production at LEP occur at slightly

different values of mχ. As in Figures 8.7 and 8.8, the width of the mediator is of crucial

importance for mχ < M/2.
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8.7 Conclusions

Very little is known about the dark sector of particle physics. It is usually assumed that

dark matter couples, to varying degrees, to all fermions in the standard model, and strong

constraints have been placed on its coupling to quarks by direct and indirect detection ex-

periments and by the Tevatron. However, it is possible that dark matter has no coupling

to quarks or at least that couplings to leptons are dominant. In such a scenario, dark mat-

ter may be efficiently produced in collisions of electrons and positrons at LEP. Irrespective

of whether dark matter is leptophilic or not, LEP is an additional probe of its properties,

and in this paper we have studied what LEP can say about the dark sector. Unlike dedi-

cated dark matter searches in direct and indirect detection experiments, our LEP bounds

do not suffer from astrophysical or atomic uncertainties.

One mode in which dark matter may be searched for at LEP, with relatively little

model dependence, is its pair production in association with a hard photon. The LEP ex-

periments have searched for anomalous mono-photon events in their data sets, but have

found no discrepancy from the prediction of the standard model. Unlike at hadronic ma-

chines, at LEP the kinematics of the event can be completely determined allowing the

standard model backgrounds to be more easily distinguished from dark matter produc-

tion. We used the mono-photon spectrum from the DELPHI experiment to place bounds

upon the properties of dark matter that couples to electrons, see Figure 8.2. In the first

part of the paper, we worked in an effective theory framework, in which dark matter in-

teractions are described by four-fermion contact operators, and we derived constraints on

the suppression scale, Λ, of these operators.

We applied the LEP bounds on electron-dark matter coupling to constrain both the

direct detection cross section and the annihilation rate of dark matter. We considered
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both the case where dark matter couples equally to all leptons and a scenario in which

dark matter couples equally to all standard model fermions. Not surprisingly, for the

“leptophilic” scenario, where LEP is probing tree-level interactions but direct detection

proceeds through a loop process, LEP bounds are highly competitive. In fact, the bounds

presented here rule out the DAMA favored region, excluding leptophilic dark matter as

an explanation of the DAMA modulated events or the CoGeNT excess, see Figure 8.5.

In the case of equal couplings to quarks and charged leptons, the LEP bounds are com-

plementary to direct detection bounds on spin-independent dark matter, see Figure 8.3.

They are weaker than existing direct detection bounds for dark matter mass mχ larger

than ∼ 4 GeV, but for light dark matter, mχ ∼< 4 GeV, they are significantly stronger. For

spin-dependent interactions, where direct detection constraints are relatively weak, LEP

outperforms all other experiments up to its kinematic limit, mχ ∼< 80 GeV. LEP bounds

are slightly stronger than those derived in [67] from Tevatron mono-jet searches, but do

not extend to as high masses, and they depend on the assumption that dark matter has

universal couplings to quarks and leptons.

We have also used LEP bounds to constrain dark matter annihilation rates, both in

the early universe and in present-day galaxies. Below the LEP kinematic limit the LEP

constraints are highly competitive. In particular, for mχ ∼< 80 GeV, they are stronger than

those coming from Fermi-LAT observations of dwarf galaxies and of the galactic center,

see Figure 9.6. They also provide a non-trivial constraint on a model invoked recently to

explain a possible γ-ray excess at the galactic center [248].

In the second part of the paper, we have repeated our analysis for the case where

the interaction between dark matter and electrons cannot be treated as a contact opera-

tor. We have “UV completed” the theory by introducing a particle that mediates dark
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matter-standard model interactions and have investigated LEP constraints as a function

of the mediator mass and width. We find that, as long as dark matter cannot be produced

through an on-shell mediator at LEP, our constraints are generally weaker than in the

contact operator case (except for a narrow range of mediator masses close to the kine-

matic threshold of on-shell production). If the mediator mass M is below the LEP center

of mass energy, but larger than 2mχ, dark matter can be produced resonantly. In this case,

the LEP constraint depends strongly on the width Γ of the mediator—a model-dependent

quantity—but if Γ is small enough, the LEP constraint on the dark matter-electron cou-

pling can be significantly stronger than for the contact operator case, see Figures 8.7, 8.8,

8.9.

As the hunt for dark matter continues and we probe the dark sector on several fronts,

both indirectly, directly and at the Tevatron and the LHC it is amusing to discover that

there are non-trivial constraints still to be found in now completed experiments. It seems

that dark matter requires us to be students of history as well as physics.
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Figure 8.6: LEP upper limits on the dark matter annihilation cross section eVσv, assuming
that dark matter production at LEP and dark matter annihilation as probed by astrophys-
ical and cosmological observations can be described by contact operators. In the upper
left panel, we show limits on the process χ̄χ→ e+e− (the only one that can be constrained
model-independently by LEP), while in the other panels we have made the assumption
that dark matter couples equally to all charged leptons. For the average dark matter ve-
locity eVv2 we have assumed the value at freeze-out in the top panels, while the bottom
left panel is for the Draco dwarf galaxy which has very small eVv2. In the bottom right
panel we compare the LEP limit on the v-independent interactions, OV and Ot, to limits
from a variety of astrophysical observations [11, 233, 248].
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Figure 8.7: DELPHI lower limits on the cutoff scale Λ = M/
√
gegχ of the dark matter ef-

fective theory. Dashed lines have been computed under the assumption that the effective
theory is valid up to LEP energies, whereas the dotted and solid lines are for cases where
the mediator massM is so small that the effective theory breaks down. Once the mediator
can be produced on-shell, its width Γ becomes relevant, as demonstrated by the shaded
regions. Γmin is the minimum allowed width of the mediator, where ge ≈ gχ = M/Λ, and
Γmin & 10−4 GeV.
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Figure 8.8: DELPHI lower limits on the cross section for dark matter-nucleon scattering
for different dark matter interaction models. As in Figure 8.7, from which the limits are
derived, dashed lines correspond to a contact operator interaction between dark matter
and electrons at LEP, while the solid and dotted lines are for interactions mediated by
light particles. In the background, we show the constraints from the direct detection ex-
periments XENON-100, CDMS, DAMA, and CoGeNT (upper left, upper right and lower
right panels) and from DAMA, PICASSO, XENON-10, COUPP and SIMPLE (lower left
panel), see fig. 8.3 for details.
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Figure 8.9: LEP upper limits on the dark matter annihilation cross section eVσv for dif-
ferent assumptions on the mass of the particle that mediates dark matter production and
annihilation. We show limits only for the annihilation channel χ̄χ → e+e−, which is the
only one that can be probed model-independently at LEP. If dark matter has several anni-
hilation channels, these limits can be straightforwardly (but in a model-dependent way)
translated into limits on the total annihilation cross section, as done in the upper right and
bottom panels of Figure 9.6. As in Figure 8.7, from which the limits are derived, dashed
lines correspond to a contact operator interaction between dark matter and electrons at
LEP, while the solid and dotted lines are for interactions mediated by light particles.
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CHAPTER 9

LHC CONSTRAINTS ON DARK MATTER INTERACTIONS

Based on the 2011 article “LEP Shines Light on Dark Matter”, written in collaboration

with Patrick J. Fox, Roni Harnik, Joachim Kopp and published in Phys.Rev. D85 (2012)

056011.
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9.1 Introduction

With the LHC physics program underway at full steam, the search for a dark matter (DM)

candidate in high energy collisions is gaining momentum. Missing energy signatures are

an integral part of many discovery channels for new physics at the LHC, and if a deviation

from Standard Model (SM) predictions should be found in any of these channels, it could

provide important evidence for the existence of new particles that are stable (or at least

long-lived) and neutral, thus fulfilling two important requirements for being the dark

matter in the universe.

In this paper, we will consider some of the more model-independent signatures of

dark matter at the LHC: events with a large amount of missing energy ( /ET ) and a single

jet or a single photon, as well as missing energy signals associated with invisible decays

of the Higgs boson. Where available, we will use existing LHC data to set limits on the

dark matter–quark and dark matter–gluon couplings in an effective field theory frame-

work, and we will demonstrate the complementarity of these limits to those obtained

from direct and indirect dark matter searches. We will also compare several mono-jet

analyses that have been carried out by ATLAS and CMS, and we will outline a strategy

for discovering dark matter or improving bounds in the future.

Dark matter searches using mono-jet signatures have been discussed previously in the

context of both Tevatron and LHC searches [119, 29, 230, 67, 229, 276, 327], and have been

shown to be very competitive with direct searches, especially at low dark matter mass and

for dark matter with spin-dependent interactions. In a related work, SSC constraints on

missing energy signatures due to quark and lepton compositeness have been discussed

in [135]. The mono-photon channel has so far mostly been considered as a search channel

at lepton colliders [92, 103, 206], but sensitivity studies exist also for the LHC [219, 352],

234



and they suggest that mono-photons can provide very good sensitivity to dark matter

production at hadron colliders. Combined analyses of Tevatron mono-jet searches and

LEP mono-photon searches have been presented in [296, 205]. The mono-photon channel

suffers from different systematic uncertainties than the mono-jet channel, and probes a

different set of DM–SM couplings, it can thus provide an important confirmation in case

a signal is observed in mono-jets.

The outline of this paper is as follows: After introducing the effective field theory

formalism of dark matter interactions in section 9.2, we will first discuss the mono-jet

channel in section 9.3. We will describe our analysis procedure and then apply it to AT-

LAS and CMS data in order to set limits on the effective dark matter couplings to quarks

and gluons. We also re-interpret these limits as bounds on the scattering and annihilation

cross sections measured at direct and indirect detection experiments. We then go on, in

section 9.4, to discuss how our limits are modified in models in which dark matter inter-

actions are mediated by a light ∼< O(few TeV) particle, so that the effective field theory

formalism is not applicable. In section 9.5, we will perform an analysis similar to that

from section 9.3 in the mono-photon channel. A special example of dark matter coupling

through a light mediator is DM interacting through the Standard Model Higgs boson, and

we will argue in section 9.6 that in this case, invisible Higgs decay channels provide the

best sensitivity. We will summarize and conclude in section 9.7.

9.2 An Effective Theory for dark matter interactions

If interactions between dark matter and Standard Model particles involve very heavy (&

few TeV) mediator particles—an assumption we are going to make in most of this paper—

we can describe them in the framework of effective field theory. (We will investigate how

235



departing from the effective field theory framework changes our results in sections 9.4 as

well as 9.6.) Since our goal is not to do a full survey of all possible effective operators, but

rather to illustrate a wide variety of phenomenologically distinct cases, we will assume

the dark matter to be a Dirac fermion χ and consider the following effective operators1

OV =
(χ̄γµχ)(q̄γµq)

Λ2
, (vector, s-channel) (9.2.1)

OA =
(χ̄γµγ5χ)(q̄γµγ5q)

Λ2
, (axial vector, s-channel) (9.2.2)

Ot =
(χ̄PRq)(q̄PLχ)

Λ2
+ (L↔ R) , (scalar, t-channel) (9.2.3)

Og = αs
(χ̄χ) (Ga

µνG
aµν)

Λ3
. (scalar, s-channel) (9.2.4)

In these expressions, χ is the dark matter field, q is a Standard Model quark field, Ga
µν is

the gluon field strength tensor, and PR(L) = (1± γ5)/2. Since couplings to leptons cannot

be directly probed in a hadron collider environment, we will not concern ourselves with

these in this paper (see [206] for collider limits on dark matter–electron couplings).

In setting bounds we will turn on operators for up and down quarks separately. The

bound for couplings to any linear combination of quark flavors can be derived from

these bounds (see section 9.3). The denomination “s-channel” or “t-channel” in equa-

tions (9.2.1)–(9.2.4), refers to the most straightforward ultraviolet (UV) completions of the

respective operators. For instance, OV arises most naturally if dark matter production in

pp collisions proceeds through s-channel exchange of a new heavy gauge boson, andOt is

most easily obtained if the production process is t-channel exchange of a heavy scalar. In

such a UV completion, Λ would be given by M/
√
gχgq, where M is the mass of the media-

tor, gχ is its coupling to dark matter and gq is its coupling to Standard Model quarks. (The

gluon operator Og is somewhat special in this respect since the coupling of a scalar me-

diator to two gluons is in itself a dimension-5 operator). In supersymmetric theories the
1Other recent studies that have used a similar formalism to describe dark matter interactions in-

clude [245, 120, 119, 29, 230, 67, 229, 197, 231, 206, 267, 327, 134, 133].
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dominant interaction of dark matter with quarks is often induced by squark exchange.

For the case of degenerate left and right handed squarks an operator of the form Ot is

predicted (but with χ being a Majorana fermion). Here we have assumed that DM is a

Dirac fermion, the case of a Majorana fermion [327] would not greatly alter our results,

except in the case of the vector operator OV , which vanishes if χ is a Majorana fermion.

Ultimately we wish to compare the collider bounds to direct detection bounds, and

when matching quark level operators to nucleon level operators the coupling between

the SM and DM must be of the form OSMOχ, where OSM involves only Standard Model

fields and Oχ involves only dark matter, so that the matrix element 〈N |OSM|N〉 can be

extracted [197]. An operator like Ot, which is not in this form, can be converted into it

by a Fierz transformation. This leads to a sum of several operators that can all contribute

to the interaction. Typically, for direct detection, one of these operators will dominate,

but at colliders there can be considerable interference. For instance, we can rewrite equa-

tion (9.2.3) as

1

Λ2
(χ̄PRq)(q̄PLχ) + (L↔ R) =

1

4Λ2
[(χ̄γµχ)(q̄γµq)− (χ̄γµγ5χ)(q̄γµγ5q)] =

1

4Λ2
(OV −OA) .

(9.2.5)

If χ is a Dirac fermion both the OV and the OA components contribute to χ production at

colliders, but in direct detection experiments, the spin-independent interaction induced

by OV dominates over the spin-dependent interaction due to OA. For Majorana dark

matter, of course, OV would vanish in all cases.
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Figure 9.1: Dark matter production in association with a single jet in a hadron collider.

9.3 Mono-jets at the LHC

In this section we will derive bounds on dark matter operators with mono-jet searches.

In the following subsection we will compare the reach of several mono-jet searches, a low

luminosity (36 pb−1) CMS search and three ATLAS searches with varying jet pT cuts using

1 fb−1 of data.2 For simplicity we will make this comparison only for the vector operator

OV , with dark matter coupling only to up quarks. We will find that the highest jet pT cuts

are most effective in setting bounds on this dark matter interaction. In the next subsection

we will proceed to use the analysis based on these highest jet-pT cuts to set bounds on all

effective operators discussed in section 9.2.

9.3.1 Comparing Various Mono-Jet Analyses

Dark matter pair production through a diagram like figure 9.1 is one of the leading chan-

nels for dark matter searches at hadron colliders [230, 67]. The signal would manifest

itself as an excess of jets plus missing energy (j + /ET ) events over the Standard Model

2As we were completing this manuscript, CMS has also updated its mono-jet analysis using 1.1 fb−1 of
data [138].
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background, which consists mainly of (Z → νν) + j and (W → `invν) + j final states. In

the latter case the charged lepton ` is lost, as indicated by the superscript “inv”. Exper-

imental studies of j + /ET final states have been performed by CDF [5], CMS [137] and

ATLAS [57, 56], mostly in the context of Extra Dimensions.

Our analysis will, for the most part, be based on the ATLAS search [56] which looked

for mono-jets in 1 fb−1 of data, although we will also compare to the earlier CMS analy-

sis [137], which used 36 pb−1 of integrated luminosity. The ATLAS search contains three

separate analyses based on successively harder pT cuts, the major selection criteria from

each analysis that we apply in our analysis are given below.3

LowPT Selection requires /ET > 120 GeV, one jet with pT (j1) > 120 GeV, |η(j1)| < 2, and

events are vetoed if they contain a second jet with pT (j2) > 30 GeV and |η(j2)| < 4.5.

HighPT Selection requires /ET > 220 GeV, one jet with pT (j1) > 250 GeV, |η(j1)| < 2,

and events are vetoed if there is a second jet with |η(j2)| < 4.5 and with either

pT (j2) > 60 GeV or ∆φ(j2, /ET ) < 0.5. Any further jets with |η(j2)| < 4.5 must have

pT (j3) < 30 GeV.

veryHighPT Selection requires /ET > 300 GeV, one jet with pT (j1) > 350 GeV, |η(j1)| < 2,

and events are vetoed if there is a second jet with |η(j2)| < 4.5 and with either

pT (j2) > 60 GeV or ∆φ(j2, /ET ) < 0.5. Any further jets with |η(j2)| < 4.5 must have

pT (j3) < 30 GeV.

In all cases events are vetoed if they contain any hard leptons, defined for electrons as

|η(e)| < 2.47 and pT (e) > 20 GeV and for muons as |η(µ)| < 2.4 and pT (µ) > 10 GeV.

3Both ATLAS and CMS impose additional isolation cuts, which we do not mimic in our analysis for
simplicity and since they would not have a large impact on our results.
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ATLAS LowPT ATLAS HighPT ATLAS veryHighPT CMS
1.0 fb−1 1.0 fb−1 1.0 fb−1 36 pb−1

Expected 15100± 700 1010± 75 193± 25 297± 45

Observed 15740 965 167 275

Table 9.1: The expected and observed number of events at ATLAS and CMS, the error
is a combination of a) Monte Carlo statistical uncertainties, and b) control sample statis-
tical uncertainties and other systematic uncertainties. For the case of ATLAS we have
combined a) and b) in quadrature.

The cuts used by CMS are similar to those of the LowPT ATLAS analysis. Mono-

jet events are selected by requiring /ET > 150 GeV and one jet with pT (j1) > 110 GeV

and pseudo-rapidity |η(j1)| < 2.4. A second jet with pT (j2) > 30 GeV is allowed if the

azimuthal angle it forms with the leading jet is ∆φ(j1, j2) < 2.0 radians. Events with more

than two jets with pT > 30 GeV are vetoed, as are events containing charged leptons with

pT > 10 GeV. The number of expected and observed events in the various searches is

shown in table 9.1.

We have simulated the dominant Standard Model backgrounds (Z → νν) + j and

(W → `invν) + j using MadGraph [34, 35] at the matrix element level, Pythia 6 [344] for

parton showering and hadronization, and PGS [144] as a fast detector simulation. We

have checked that results obtained with Delphes [319] as an alternative detector simu-

lation, would change our results by only a few per cent. In figure 9.2, we compare our

simulation of the dominant backgrounds to both the data and the MC predictions of both

collaborations4, we also show the spectrum for candidate dark matter models. In each

case we rescale the normalization of the two backgrounds by a correction factor chosen

to fit the number of events predicted by the collaborations. After this rescaling we find

excellent agreement in shape between our predictions and theirs. When predicting the

4Note that the MC predictions of the collaborations are for all backgrounds. For the highest /ET bins
the background is completely dominated by W + j and Z + j, but in the lowest bins there can be ∼ 10%
contributions from tt̄, QCD and other reducible backgrounds which we did not simulate.
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dark matter signal, we rescale the rate by the correction factor found for the invisible Z

background, since this background is most similar to the DM signal. The correction fac-

tors are approximately 0.9, 1.1 and 1.2 for the three ATLAS analyses (from low to very

high respectively), and approximately 0.7 for the CMS analysis.

As can be seen in figure 9.2, our simulation of Standard Model backgrounds is in very

good agreement with the CMS and ATLAS background predictions and with the data, so

that we can have confidence in our simulations also for the signal predictions. Turning

to those, we see from figure 9.2 that a dark matter signal mainly changes the slope of

the distribution, leading to the most significant effects at high /ET [79, 67, 206]. The main

reason for the difference in shape is that dark matter production in the effective theory

framework is a 2→ 3 process proceeding through non-renormalizable operators, whereas

the dominant Standard Model backgrounds have 2→ 2 kinematics.

Despite this clear difference in shape between the signal and the background we will

nonetheless use only the total event rate to place constraints on dark matter properties

since we cannot reliably model systematic uncertainties in the background shape. How-

ever, the existence of three ATLAS analyses with different pT cuts allows a crude version

of a shape analysis to be carried out. Since the DM signal spectrum is harder than the

background spectrum one would expect harder selection cuts to improve the ratio of sig-

nal to background, as is reflected in figure 9.2. To quantify this we compute the expected

and observed 90% exclusion limits on the dark matter–SM coupling, parameterized by

the suppression scale Λ, for a given dark matter mass mχ by requiring

χ2 ≡ [∆N −NDM(mχ,Λ)]2

NDM(mχ,Λ) +NSM + σ2
SM

= 2.71 . (9.3.6)

Here σSM is the uncertainty in the predicted number of background events, see table 9.1.

In computing the number of expected signal events,NDM, we include the correction factor
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Figure 9.2: Measured missing energy spectra of j + /ET for the three ATLAS analyses and
the CMS analysis discussed in the text (black data points with error bars) compared to the
collaborations’ background predictions (yellow shaded histograms) and to our Monte
Carlo prediction with (blue histograms) and without (black dotted lines) a dark matter
signal. In all cases the DM signal comes from the vector operator, OV , and mχ = 10 GeV,
Λ = 400 GeV. Our simulations are rescaled to match the overall normalization of the
collaborations’ background predictions.
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Figure 9.3: Limits on the suppression scale Λ for the vector operator, OV , where only the
coupling to up quarks is considered, for the three ATLAS analyses and the analysis of
CMS. In all cases the observed (expected) bound is represented by a solid (dashed) line.

discussed above to account for the inaccuracy of our detector simulation. We define a

quantity

∆N =


0 expected bound

Nobs −NSM observed bound ,

(9.3.7)

whereNobs(SM) is the number of observed (predicted background) events. With the excep-

tion of the LowPT analysis at ATLAS, all analyses experienced a downward fluctuation in

the background and hence give stronger bounds on DM than expected. Since this lucky

accident is unlikely to be repeated in the future we will in the following show both the

observed and expected bounds. The limits on Λ for the operator OV , with coupling to up

quarks only, is shown in figure 9.3. As expected the strongest bounds come from the anal-

ysis with the hardest jet pT and /ET cuts, and in all cases but LowPT the observed bound

is stronger than expected due to the downward fluctuations in the data.
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It is interesting to note that the CMS and ATLAS LowPT bounds are comparable de-

spite the fact that CMS used 36 pb−1 of data whereas ATLAS used 1 fb−1. This is because

both analyses are dominated by systematic uncertainties which do not decrease much

with luminosity. This clearly illustrates the utility of making cuts that concentrate on the

high pT tail of the mono-jet distribution rather than simply acquiring more luminosity.

The ability to harden cuts and focus on the tails of the distribution increases as the tails

get populated with growing luminosity. Exactly what the best cuts for the DM search are

is unclear since there is not much difference between expected bounds from the HighPT

and veryHighPT analyses, despite a considerable hardening of cuts. A dedicated search,

with tuned pT and /ET cuts, would presumably lead to even stronger bounds than those

coming from ATLAS veryHighPT, we strongly advocate for such a study to be carried

out.

The high pT analyses are most sensitive to the vector operator in the case in which it

involves only up quarks. We have also investigated other operators and found that the

advantage of the high pT cuts persists, unless the operator involves only heavier, “sea”,

quarks, such as strange or charm. For operators involving these the low pT analysis does

equally well. The reason is that for sea quarks the parton distribution functions are more

rapidly falling, which leads to a softer pT spectrum more similar to the background spec-

trum.

Since the expected bounds from the HighPT and veryHighPT analyses are compa-

rable, we will concentrate from now on on only the veryHighPT ATLAS analysis, and

show both the expected and observed bounds from this analysis. It should be noted that

the veryHighPT analysis had the largest fractional downward fluctuation and so the

observed bound is considerably stronger than expected, this is unlikely to repeat with

more luminosity. However, exactly how the expected bounds change with luminosity is
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not straightforward because this depends on the details of systematic uncertainties at yet

higher pT with higher luminosity.

We can repeat the exercise above for each operator in turn, for both light quark fla-

vors individually. The results for OV , OA, Ot and Og are shown in figure 9.4. As for

earlier Tevatron analyses [230, 67], we note that the collider bounds on the various oper-

ators are similar to one another. The collider limits are not strongly affected by the spin

structure of the operator, which, as we shall soon see, will give these bounds a relative

advantage over direct detection experiments for spin-dependent dark matter scattering

typically mediated by axial-vector operators. The bound on the t-channel operator Ot is

somewhat weaker than the bound on OV and OA because of the prefactor 1/4 and be-

cause of partial negative interference between the two terms on the right hand side of

equation (9.2.5). The bound on the gluon operator Og is very strong, considering that

the definition of this operator contains a factor αs, because of the high gluon luminosity

at the LHC, despite the operator being of higher dimension than the other operators we

consider.

The bounds on the suppression scales of individual operators can be combined for

testing models that predict contributions from multiple operators suppressed by the same

scale. For instance, consider a model in which dark matter couples to up and down

quarks with couplings proportional to cu/Λ
2 and cd/Λ

2, where Λ is a joint suppression

scale and cu, cd are dimensionless coefficients. The constraint on Λ can be obtained from

the individual constraints on couplings only to up quarks, Λu, and only to down quarks,

Λd, from figure 9.4 according to the relation

Λ4 = c2
uΛ

4
u + c2

dΛ
4
d . (9.3.8)
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Figure 9.4: Limits on the suppression scale Λ for various operators, where only the cou-
pling to one quark flavor at a time is considered, for the veryHighPT ATLAS analysis.
In all cases the observed (expected) bounds are shown as solid (dashed) lines.

9.3.2 Mono-Jet Bounds Compared to Direct Dark Matter Searches

With these collider bounds in hand we can now place constraints on direct detection rates,

in a similar fashion to [230, 67, 229, 206, 327]. For the coefficients required to translate

the quark level matrix elements 〈N |q̄γµq|N〉 and 〈N |q̄γµγ5q|N〉 into nucleon level matrix
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elements, we use the values from [130, 77, 70], as collected in [67]. We also need the matrix

element for the gluon field strength in the nucleon [340],

〈N |αsGa
µνG

aµν |N〉 = −8π

9

(
mN −

∑
q=u,d,s

〈N |mq q̄q|N〉
)
. (9.3.9)

For 〈N |mq q̄q|N〉, we follow [193] but use an updated [359] value of the pion-nucleon

sigma term ΣπN = 55 MeV.5

When translating collider limits on effective dark matter–Standard Model couplings

into constraints on the dark matter–nucleon scattering cross section, we make the simpli-

fying assumption that the couplings are universal in quark flavor. If flavor-ratios different

from unity are desired it is straightforward to translate the collider bounds into direct de-

tection constraints using equation (9.3.8), with cu 6= cd. In other words, the LHC limits on

the dark matter–nucleon cross section shown in figure 9.5 would have to be rescaled by a

factor (Λ4
u + Λ4

d)/(c
2
uΛ

4
u + c2

dΛ
4
d).

The bounds on the dark matter–nucleon scattering cross sections for the various op-

erators, along with bounds (and some notable excesses) from dedicated direct detection

experiments are shown in figure 9.5. A few summary comments are in order:

• For spin-independent dark matter couplings, the LHC bounds provide the most

powerful constraints for mχ below about 5 GeV for the scalar and vector operators

and below 10 GeV for the gluon operator.

• The LHC bound on the vector operator is within 1–2 orders of magnitude from the

parameter region suggested by DAMA, CoGeNT and CRESST. The bound on the

gluon operator Og is several order of magnitude stronger and is competing with

CDMS and XENON for dark matter masses up to about 500 GeV.
5Note however that recent lattice determinations [358, 349, 223, 348] of the strange quark content of the

nucleon are considerably lower. The effect on our bounds is small.
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Figure 9.5: ATLAS limits on (a) spin-independent and (b) spin-dependent dark matter–
nucleon scattering, compared to limits from the direct detection experiments. In par-
ticular, we show constraints on spin-independent scattering from CDMS [30], XENON-
10 [39], XENON-100 [44], DAMA [86], CoGeNT [4, 208] and CRESST [40], and con-
straints on spin-dependent scattering from DAMA [86], PICASSO [71], XENON-10 [38],
COUPP [76] and SIMPLE [224]. DAMA and CoGeNT allowed regions are based on our
own fits [279, 206, 208] to the experimental data. Following [247], we have conservatively
assumed large systematic uncertainties on the DAMA quenching factors: qNa = 0.3 ± 0.1
for sodium and qI = 0.09 ± 0.03 for iodine, which leads to an enlargement of the DAMA
allowed regions. All limits are shown at 90% confidence level, whereas for DAMA and
CoGeNT we show 90% and 3σ contours. For CRESST, the contours are 1σ and 2σ as
in [40].

• The LHC provides the strongest bound on spin dependent dark matter–nucleon

scattering, by a margin of about two orders of magnitude. The LHC bound becomes

less powerful than current direct detection experiments for mχ & 1− 2 TeV.

9.3.3 Limits on Dark Matter Annihilation

In addition to limits on direct detection cross sections, we have also studied the con-

straints that the LHC can set on dark matter annihilation cross sections relevant to in-
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direct astrophysical searches. The dark matter annihilation rate is proportional to the

quantity 〈σvrel〉, where σ is the annihilation cross section, vrel is the relative velocity of the

annihilating particles, and the average 〈·〉 is over the dark matter velocity distribution in

the particular astrophysical environment considered. Working again in the effective field

theory framework, we find for dark matter coupling to quarks through the dimension

6 vector operator, equation (9.2.1), or the axial-vector operator, equation (9.2.2), respec-

tively [206],

σV vrel =
1

16πΛ4

∑
q

√
1− m2

q

m2
χ

(
24(2m2

χ +m2
q) +

8m4
χ − 4m2

χm
2
q + 5m4

q

m2
χ −m2

q

v2
rel

)
, (9.3.10)

σAvrel =
1

16πΛ4

∑
q

√
1− m2

q

m2
χ

(
24m2

q +
8m4

χ − 22m2
χm

2
q + 17m4

q

m2
χ −m2

q

v2
rel

)
. (9.3.11)

Here the sum runs over all kinematically accessible quark flavors, and mq denotes the

quark masses. We see that, for both types of interaction, the leading term in σvrel is inde-

pendent of vrel when there is at least one annihilation channel withm2
q & m2

χv
2
rel. Note that

for DM couplings with different Lorentz structures (for instance scalar couplings), the

annihilation cross section can exhibit a much stronger vrel-dependence. For such opera-

tors, collider bounds on 〈σvrel〉 can be significantly stronger than in the cases considered

here, especially in environments with low 〈v2
rel〉 such as galaxies (see, for instance, refer-

ence [206] for a more detailed discussion).

In figure 9.6, we show ATLAS constraints on 〈σvrel〉 as a function of the dark matter

mass mχ for a scenario in which dark matter couples equally to all quark flavors and

chiralities, but not to leptons. (If dark matter can annihilate also to leptons, the bounds

are weakened by a factor 1/BR(χ̄χ → q̄q).) To compute these limits, we have used the

bounds on Λu and Λd from figure 9.4, and have converted them into a limit on the flavor-

universal cutoff scale Λ using equation (9.3.8). We have neglected the small contribution

of initial states involving strange and charm quarks to the mono-jet rate at the LHC.
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Figure 9.6: ATLAS constraints on dark matter annihilation for flavor-universal vector or
axial vector couplings of dark matter to quarks. (If dark matter can annihilate also to
leptons, the bounds are weakened by a factor 1/BR(χ̄χ → q̄q).) We consider an environ-
ment with 〈v2

rel〉 = 0.24, corresponding to the epoch at which thermal relic dark matter
freezes out in the early universe. 〈v2

rel〉 is much smaller in present-day environments such
as galaxies, which leads to improved collider bounds on the annihilation rate in those
systems. The value of 〈σvrel〉 required for dark matter to be a thermal relic is indicated by
the horizontal black line.

We see from figure 9.6 that, as long as the effective field theory framework provides

a valid description of dark matter production at the LHC and of its annihilation in the

early universe, thermal relic cross sections are ruled out at 90% confidence level for mχ ∼<

15 GeV in the case of vector couplings and for mχ ∼< 70 GeV in the case of axial vector

couplings. As discussed above, the limits can become somewhat weaker if additional

annihilation channels exist, and stronger in environments with low 〈v2
rel〉.
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9.4 Light mediators

So far, we have worked entirely in the effective field theory framework, assuming the

particles that mediate dark matter–Standard Model interactions to be much heavier than

the typical momentum exchanged in mono-jet events, and the production at colliders to

be well approximated by a contact operator. However, given that the LHC is probing

record high scales, particularly for event samples with hard pT cuts, it is worthwhile to

investigate how the predictions of the effective theory are modified once a propagating

particle is introduced to mediate the interaction of matter and dark matter.

As discussed in [67, 229, 206, 232, 37], the sensitivity of colliders can change dramat-

ically in this case, either suppressing or enhancing the signal. In the case of “s-channel”

operators, resonance effects can enhance the production cross section once the mass of

the s-channel mediator is within the kinematic range and can be produced on-shell. This

enhancement is particularly strong when the mediator has a small decay width Γ, though

it should be noted that within our assumptions Γ is bounded from below due to the open

decay channels to jets and to dark matter.

On the other hand, colliders have a relative disadvantage compared to direct detection

experiments in the light mediator case. The reason is that, from dimensional analysis, the

cross section for the collider production process pp→ χ̄χ+X scales as,

σ(pp→ χ̄χ+X) ∼ g2
qg

2
χ

(q2 −M2)2 + Γ2/4
E2 , (9.4.12)

where E is of order the partonic center-of-mass energy, M is the mass of the s-channel

mediator and q is the four momentum flowing through this mediator. At the 7 TeV LHC,√
q2 has a broad distribution which is peaked at a few hundred GeV and falls slowly

above. The mediator’s width is denoted by Γ, and gq, gχ are its couplings to quarks
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and dark matter, respectively. The direct detection cross section, on the other hand, is

approximately

σ(χN → χN) ∼ g2
qg

2
χ

M4
µ2
χN , (9.4.13)

with the reduced mass µχN of the dark matter and the target nucleus.

When M2 � q2, the limit that the collider sets on g2
χg

2
q becomes independent of M ,

whereas the limit on g2
χg

2
q from direct detection experiments continues to become stronger

for smaller M . In other words, the collider limit on σ(χN → χN) becomes weaker as M

becomes smaller. On the other hand, when mχ < M/2 and the condition
√
q2 ' M can

be fulfilled, collider production of χ̄χ+X experiences resonant enhancement. Improved

constraints on Λ can be expected in that regime.

In figure 9.7, we investigate the dependence of the ATLAS bounds on the media-

tor mass M more quantitatively including both on-shell and off-shell production. Even

though dark matter–quark interactions can now no longer be described by effective field

theory in a collider environment, we still use Λ ≡M/
√
gχgq as a measure for the strength

of the collider constraint, since Λ is the quantity that determines the direct detection cross

section. As before, we have used the cuts from the ATLAS veryHighPt analysis (see sec-

tion 9.3). We have assumed vector interactions with equal couplings of the intermediate

vector boson to all quark flavors.

At very large M (& 5 TeV), the limits on Λ in figure 9.7 asymptote to those obtained in

the effective theory framework. For 2mχ � M ∼< 5 TeV, resonant enhancement leads to a

significant improvement in the limit since the mediator can now be produced on-shell, so

that the primary parton–parton collision now leads to a two-body rather than three-body

final state. As expected from equation (9.4.12), the strongest enhancement occurs when

the mediator is narrow. In figure 9.7, we show the effects of resonance enhancement. We
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Figure 9.7: ATLAS limit on Λ ≡ M/
√
gχgq as a function of the mass M of the particle

mediating dark matter–quark interactions. We have assumed s-channel vector-type in-
teractions, and we have considered the values mχ = 50 GeV (red) and mχ = 500 GeV
(blue) for the dark matter mass. We have varied the width Γ of the mediator between the
values M/3 (lower boundary of colored bands) and M/8π (upper boundary of colored
bands). Dashed dark gray lines show contours of constant√gχgq.

consider mediators of fixed width, ranging from Γ = M/8π to Γ = M/3, the associated

enhancments are illustrated by the colored bands, with the upper edge corresponding

to the narrow case and the lower edge to a wide mediator. 6 The shape of the peaks in

figure 9.7 is determined by the interplay of parton distribution functions, which suppress

the direct production of a heavy mediator, and the explicit proportionality of Λ to M

according to its definition. Below M ' 2mχ, the mediator can no longer decay to χ̄χ,

but only to q̄q, so in this mass range, it can only contribute to the mono-jet sample if it is

produced off-shell. In that regime, the limit on Λ is rather weak (even though the limit on

g2
χg

2
q is independent ofM there as discussed above), and the dependence on Γ disappears.

In light of this result it is important to revisit our limits from section 9.3 and check

6Γ = M/8π corresponds to a mediator that can annihilate into only one quark flavor and helicity and
has couplings gχgq = 1. Since in figure 9.7, we have assumed couplings to all quark helicities and flavors
(collider production is dominated by coupling to up-quarks though), and since gχgq > 1 in parts of the plot
(see dashed contours), Γ = M/8π can be regarded as an approximate lower limit on the mediator width.
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that they are consistent with the effective theory in which they were derived. In other

words, we have to verify that models which saturates our limits can still be described in

effective field theory. Inspecting the dashed contours of constant mean coupling√gqgχ in

figure 9.7, we see that for mediator masses above ∼ 5 TeV, where the limits derived in the

full renormalizable theory asymptote to those derived in the effective theory, our limits

would correspond to √gqgχ ∼ 5–10, depending on mχ. This is still below the √gqgχ = 4π,

which for small mχ would be reached at M ∼ 10 TeV. We thus see that there is consid-

erable parameter space available in the renormalizable model in which effective theory

provides a good low-energy approximation. Moreover, we have seen that even for lighter

mediators, M ∼ few × 100 GeV, the limits derived from the effective theory are valid,

though overly conservative. However, for very light mediators, M ∼< 100 GeV, the col-

lider bounds on direct detection cross sections are considerably weakened.

Even though we have only quantitatively demonstrated the above conclusions for

dark matter with vector couplings here, the results of references [67, 206] show that they

can be generalized to other types of effective operators, in particular axial vector OA and

scalar t-channel Ot. For the gluon operator Og, we remark that its most natural UV-

completion is through a diagram in which the two gluons as well as a new scalar s-

channel mediator couple to a triangular heavy quark loop. Due to the additional loop

factor which need not be present in UV completions of OV and OA, the masses of the

new heavy scalar and the new heavy quark propagating in the loop cannot be larger than

∼ 1 TeV for a theory that saturates our limit Λ ∼ 500 GeV (see figure 9.4). Therefore, as

one can see from figure 9.7, effective field theory is not strictly applicable in such a model,

but the limit it gives is on the conservative side.
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Let us finally comment on the case of scalar dark matter–quark couplings of the form

OS ≡
(χLχR)(qLqR)

Λ2
+ (L↔ R) , (9.4.14)

which we have not considered so far in this paper. As any UV completion of that operator

has to preserve SU(2) invariance, it is necessary that one of the chirality eigenstates χ is

an SU(2) doublet or that the UV completion of OS involves coupling to the Higgs field

H . The first possibility is strongly constrained because dark matter charged under SU(2)

would have been detected already in direct detection experiments, unless it is very light,

mχ ∼< few GeV. The second possibility, a Higgs insertion, implies that OS should be

rewritten as

O′S ≡
yq(χLχR)(qL 〈H〉 qR)

Λ′3
+ (L↔ R) , (9.4.15)

where yq is the Standard Model Yukawa coupling of q and Λ′ is the cutoff scale of the

effective theory (the scale Λ from equation (9.4.14) has no physical meaning in the case

of a Higgs insertion). The simplest possibility to realize O′S at the renormalizable level

is through mixing of the Higgs with a new scalar singlet, which in turn couples to dark

matter. In this case, both dark matter production at the LHC and dark matter–nucleus

scattering in direct detection experiments are dominated by sea quark contributions, due

to Yukawa suppression. We have checked that, in this case, the limit the LHC could set

on Λ′ is below 100 GeV and thus clearly outside the regime of validity of effective field

theory. We will therefore not consider operators of the form OS or O′S any further in this

paper.

To conclude this section, let us emphasize that here we have only considered one pos-

sible UV completion of the effective operators introduced in section 9.2. While this helps

outline some of the main effects of finite mediator masses, the exact details of these effects

will be model-dependent.
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9.5 Mono-photons at the LHC

While mono-jets are certainly an excellent search channel for dark matter, it is important

to investigate other complementary channels with different systematic uncertainties. An

interesting final state to consider is the mono-photon channel, which we will study in

this section. A search in an independent channel can help determine if any excess seen

in j + /ET is due to new physics or due to mismodelling of backgrounds. Also, there are

many types of new physics besides dark matter that can lead to mono-jet signatures, for

instance large extra dimensions [47] and unparticles [217], so that searches in additional

channels will be necessary to narrow down the origin of any observed signal. In addition,

information from several channels may shed light on the nature of the DM–SM coupling.

For example, the relative size of an excess in mono-photons compared to one in mono-jets

is sensitive to whether the operator dominating the signal involves up or down quarks,

due to their different electric charges. A gluon operator like Og from equation (9.2.4) is

not expected to produce a significant mono-photon signal at all.

Studies of the mono-photon final state have been carried out by CDF [5] and DØ [8],

but here we follow the recent CMS analysis, based on 1.14 fb−1 of luminosity [136]. Single

photons can be produced in association with a dark matter pair through diagrams similar

to figure 9.1, but with the outgoing gluon replaced by a photon. Thus, the cross section

for mono-photon production is suppressed compared to mono-jet production by the ratio

of the strong and electromagnetic fine structure constants as well as a color factor. On the

other hand, the background is similarly smaller. Systematic uncertainties on the back-

ground prediction are similar, of order 10–15%, for the ATLAS veryHighPT mono-jet

search and for the CMS mono-photon search [136]. The acceptance for mono-photons is

somewhat lower than that for mono-jets because of the requirement that they fall in the
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barrel part of the electromagnetic calorimeter.

In our simulations, we follow [136] and require the photon to a have transverse mo-

mentum pT (γ) > 95 GeV and pseudo-rapidity |η| < 1.44. The missing energy in the event

must satisfy /ET > 80 GeV and the event is vetoed if there is a jet with pT (j) > 20 GeV

within |η(j)| < 3 or a lepton with pT (`) > 10 GeV and ∆R(`, γ) > 0.04. CMS applies

several additional photon identification and isolation criteria which we do not attempt

to mock up. Instead, we use PGS as a detector simulation and apply a correction fac-

tor of 0.71 to account for these isolation requirements. The correction factor is obtained

by comparing our prediction for the dominant irreducible background (Z → νν) + γ to

the collaboration’s. We have also checked that the shape we predict for (Z → νν) + γ

is in excellent agreement with their prediction, which provides a useful verification of

our simulations. Apart from (Z → νν) + γ, the backgrounds in the γ + /ET channel are

(Z → νν)+j, with the jet mistaken for a photon,W → eν, with the electron mistaken for a

photon, bremsstrahlung from cosmic ray or beam halo muons and (W → `invν) + γ, with

an unidentified charged lepton `. The expected number of events in the mono-photon

sample, according to CMS, is 67.3±8.4 (with the uncertainty dominated by statistics) and

the number of observed events was 80.

To set limits on dark matter, we add our signal prediction to the number of predicted

background events from [136] and compare the result to the CMS data following the same

statistical procedure as in section 9.3. The resulting limits on the cutoff scale Λ for vector

operators involving up and down quarks are shown in figure 9.8. The current mono-

photon bounds still trail behind mono-jet limits. However, the mono-photon limits may

improve more rapidly than those from mono-jets because the former are still statistics

dominated as opposed to the latter which are already dominated by systematic uncer-

tainties. Furthermore, as we saw in the previous section, applying harder pT cuts may
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Figure 9.8: Limits from the CMS mono-photon analysis on the suppression scale Λ for the
vector operator, OV , where only the coupling to one quark flavor at a time is considered.
The expected bound is shown with a dashed line and the observed one with a solid line.

yield stronger bounds. The resulting limit on the direct detection cross section is shown

in figure 9.9.

9.6 Dark Matter Coupling through Higgs Exchange

One of the most motivated scenarios for dark matter is the case where dark matter inter-

acts through the exchange of a Higgs boson [117]. In this section we will consider this

possibility. For concreteness we will assume a specific model, the Standard Model plus a

dark matter particle that couples via the Higgs “portal”. We will place limits on the direct

detection signal in this model at the LHC in two ways. First, using potential future limits

on the invisible branching fraction of the Higgs, we place an future upper bound on the

direct detection signal. Then we will use current Higgs limits and assume that the decay

of a Higgs to dark matter is responsible for the Higgs non-discovery. This will lead to
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Figure 9.9: Limits from the CMS mono-photon analysis on spin-independent dark
matter–nucleon scattering, compared to limits from direct detection experiments. In par-
ticular, we show constraints on spin-independent scattering from CDMS [30], XENON-
10 [39], XENON-100 [44], DAMA [86], CoGeNT [4, 208] and CRESST [40]. DAMA and
CoGeNT allowed regions are based on our own fits [279, 206, 208] to the experimental
data. Following [247], we have conservatively assumed large systematic uncertainties on
the DAMA quenching factors: qNa = 0.3± 0.1 for sodium and qI = 0.09± 0.03 for iodine,
which leads to an enlargement of the DAMA allowed region. All limits are shown at 90%
confidence level, whereas for DAMA and CoGeNT we show 90% and 3σ contours. For
CRESST, the contours are 1σ and 2σ as in [40].

interesting lower bounds on dark matter–nucleon scattering rates.

9.6.1 The Invisible Higgs Analysis as a Dark Matter Search

One way to search for dark matter coupled through the Higgs is to follow the strategy

of the previous sections. Namely, integrating out the Higgs induces a scalar operator

∼ (χ̄χ)(q̄q), which is suppressed by the Yukawa couplings, and an operator like Og that

couples dark matter to gluons after a top quark loop is integrated out. One can then

look for a mono-jet (or mono-photon) signal to constrain the magnitude of the operator.
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However, for the light generations the Yukawa suppression will make the bound on such

operators weaker (at least as compared with operators that are not Yukawa suppressed).

Furthermore, a light Standard Model Higgs is a “light mediator” in the sense that its

propagator may easily be dominated by the momentum transfer q2, rather than the mass

m2
h, which will lead to another disadvantage of mono-jet searches (see section 9.4).

Here we will pursue a different strategy which will give stronger bounds within a

model in which DM couples via a Higgs boson h, particularly when dark matter is so

light that the decay h → χ̄χ is kinematically allowed. Production of a Higgs at the LHC

may proceed through the Higgs’ gauge, rather than its Yukawa, couplings. In particular,

one can produce a Higgs in association with a Z or a W or through vector boson fusion

(VBF). If mχ < mh/2, the Higgs may have a sizeable branching fraction into missing

energy, leading to invisible Higgs signals such as Z + /ET (from associated production)

or forward jets plus /ET (from VBF). For a given Higgs mass, the limits on the invisible

branching fraction of the Higgs may be translated into limits on the coupling of the Higgs

to dark matter and thus into a limit on the direct detection cross section mediated by a

Higgs.7

For concreteness we consider a toy model in which a new neutral and stable dark mat-

ter fermion, χ, is added to the Standard Model, coupling to the Higgs.8 For example, this

coupling may be written as χ̄χH†H , which below electroweak symmetry breaking leads

to a coupling of the form yχhχ̄χ. In these expressions H denotes the SM Higgs doublet,

h stands for the physical Higgs boson, and yχ is a dimensionless coupling constant. The

7Some related work on the application of the invisible Higgs search to the dark matter interaction has
been discussed in [268, 246]. The bounds on the invisible Higgs branching fraction from XENON-100 in the
scalar dark matter case are discussed in [295]

8One could easily apply our methods also to the case of a minimal model of scalar dark matter [117],
giving similar results, or to models with extended Higgs sectors in which Higgs production can be modi-
fied.
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branching fraction of the Higgs into dark matter pairs is

BR(h→ χ̄χ) =
Γ(h→ χ̄χ)

Γ(h→ χ̄χ) + Γ(SM)
, Γ(h→ χ̄χ) =

y2
χ

8π
mh

[
1−

(
2mχ

mh

)2
]3/2

,

(9.6.16)

where Γ(SM) is the total width of the Higgs in the Standard Model, which depends on the

Higgs mass, and Γ(h→ χ̄χ) is the partial width for decays into dark matter. The invisible

Higgs search from colliders sets an upper bound on BR(h → χ̄χ), which in our model

constrains the size of yχ. We can then translate this bound into a bound on the direct

detection cross section using the couplings of the Higgs to the nucleus at low energies.

This can proceed in two ways—the Higgs can couple to the strange quark in the nucleus

or it can couple to gluons via a heavy quark loop. These couplings are suppressed either

by the Yukawa coupling of the strange quark or by a loop factor, which will give the

collider limits a relative advantage since those involve order 1 couplings. We use the

matrix element for the gluon coupling given in equation (9.3.9) and for the strange quark

coupling as discussed in section 9.3.2. The resulting direct detection cross section is

σN = 5× 10−6
µ2 y2

χ

πm4
h

, (9.6.17)

which sets the direct detection bounds once we extract the allowed size of yχ from the

invisible Higgs search.

There are many works discussing the future bounds on invisible Higgs decays [213,

166, 196, 320]. Here we will not conduct a study of our own, but rather take the bounds

projected in an ATLAS analysis [320] where the production modes ZH and VBF are con-

sidered. The dominant SM backgrounds for these processes are ZZ → ``νν for the ZH

production mode and jets from QCD, W± or Z for the VBF case. The authors of [320]

have simulated both signal and background with the full ATLAS detector simulation.

The systematic uncertainties from Monte Carlo, experimental systematic uncertainty, and

the theoretical knowledge of the production cross-sections are taken into account.
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Assuming 30 fb−1 of data with 14 TeV center of mass energy, the projected 95% C.L.

upper bounds on the invisible branching ratio are [320]

channel ZHinv VBF

mh = 120 GeV 0.75 0.55

mh = 250 GeV – 0.85

Using these bounds and equation (9.6.16), we can set upper limits on the direct detection

cross section. These limits are shown in the left panel of figure 9.10 for various Higgs

masses and production channels. These dark matter–nucleon scattering cross section

bounds are more stringent than the mono-jet and mono-photon bounds of the previous

sections due to the smallness of the Higgs–nucleon coupling. The bounds deteriorate

when the dark matter mass approaches the kinematic limit for invisible Higgs decay at

mχ = mh/2. Comparing the results for different Higgs masses, the bound for a 250 GeV

Higgs is weaker than the one for mh = 120 GeV because at 120 GeV, the SM Higgs width

Γ(SM) is small, allowing the invisible channel to compete even for moderate couplings.

At 250 GeV, the SM decay rate is dominated by decays to W and Z bosons, and in order

for the Higgs to have a sizeable invisible branching fraction, the coupling to dark mat-

ter must be quite large. This effect over-compensates the 1/m4
h suppression in the direct

detection cross section which pushes the limits in the opposite direction.
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Figure 9.10: Left: Projected 95% C.L. upper bounds on dark matter–nucleon scattering
mediated by a Higgs boson from future ATLAS searches for invisible Higgs decays. Lim-
its are shown for the Z + H and vector boson fusion (VBF) production modes, and for
Higgs masses of 120 GeV and 250 GeV [320]. Right: Lower 95% C.L. bounds on dark
matter–nucleon scattering mediated by a Higgs boson, derived from the CMS exclusion
of a Standard Model Higgs boson in certain mass ranges [139], assuming that the Higgs
was missed at the LHC due to its large invisible width. The direct detection limits we
show for comparison are the same as in figures 9.5 and 9.9.

9.6.2 A Lower Bound on Dark Matter–Nucleon Scattering from Current

Higgs Limits

In the previous subsection we discussed the future reach of the LHC in discovering dark

matter “directly” through invisible Higgs decay. But if dark matter indeed couples to

the Standard Model through Higgs exchange, there is always an interesting connection

between the Higgs search and the search for dark matter. This is true both for bounds on

the Higgs, as well as for a potential Higgs discovery.

For example, the recent LHC exclusions [139, 58] of a SM Higgs between ∼ 140 GeV

and ∼ 400 GeV have an amusing interpretation as a possible lower bound on the dark
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matter scattering rate expected at direct detection experiments. In particular, if the Higgs

has a sizeable branching fraction into dark matter, this leads to a suppression of the decay

channels used in the SM Higgs searches. Thus, a Higgs mass that is inconsistent with

data for SM branching ratios may be allowed if the invisible width is large enough to

sufficiently suppress the SM search modes, dominantly h → W+W− or h → ZZ in the

Higgs mass range of interest.

For concreteness we consider the combined Higgs bound from CMS [139], but results

would be similar for the ATLAS bound [58]. Over the mass range 140 GeV ∼< mh ∼<

400 GeV the bound on ξ = (σ × BR)/(σ × BR)|SM varies from ∼ 0.3–1, here BR is the

branching ratio into the relevant search mode, in this mass range either h → W+W− or

h→ ZZ. Using (9.6.16) this can be translated into a lower bound on yχ under the assump-

tion that the Higgs is produced with SM cross section, and one decay mode dominates

the bound, but Higgs decays into SM channels are suppressed by a large invisible width

(and by nothing else),

y2
χ ≥ 8π

ΓSM
tot

mh

1− ξ
ξ

(
1− 4m2

χ

m2
h

)−3/2

. (9.6.18)

This lower bound on the Higgs–DM coupling allows us to place a lower bound on dark

matter–nucleon scattering due to Higgs exchange, for a light Higgs that was missed at

the LHC due to a large invisible width. This is shown for several candidate Higgs masses

in figure 9.10. It is interesting to note that in some cases shown (e.g. Higgs masses of 250

and 350 GeV) this lower bound is already in conflict with direct detection limit for a wide

range of dark matter masses. This implies that such minimal models of Higgs-coupled

dark matter are already being probed by the combination of the LHC and direct detection.

To evade these limits non-minimal models must be considered, either modifying Higgs

production rates or modifying Higgs decay beyond the dark matter channel. It will be in-

teresting to follow upcoming limits on the Standard Model Higgs which will cause these
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lower bounds to rise and possibly come in to conflict either with dark matter searches, or

with invisible Higgs searches.

Finally, we note that even if a Standard Model-like Higgs is discovered at the LHC,

interesting bounds on direct detection may be extracted. The strength of these bounds as

well as their nature, upper or lower, depend on the details of the discovery. For example,

assume a Standard Model-like Higgs is discovered at 120 GeV, say in the γγ decay mode.

If the Higgs production rate times branching fraction agrees with the Standard Model

prediction, very little room will be left for decay of the Higgs into light dark mater. Be-

cause the decay channel that is competing with dark matter for this Higgs mass, h → bb̄,

has very small branching ratio, this will set a strong upper bound on the coupling of the

Higgs to χ (of order the bottom Yukawa coupling), and thus on direct or indirect detec-

tion.

One the other hand, if the Higgs is discovered with a rate that is below the Standard

Model prediction, one can postulate that the decay into dark matter is responsible for

the reduced rate. Within this assumption, both an upper and a lower limit on dark mat-

ter couplings may be derived. In this case the invisible Higgs search can confirm these

assumption and provide a potential dark matter discovery.

9.7 Conclusions

Missing energy signatures have long been known to be among the most promising dis-

covery channels at the LHC. They can provide sensitivity to dark matter, one of the few

extensions of the Standard Model which are known to exist, even though the exact na-

ture of dark matter, its mass(es) and coupling constants, are so far completely unknown.
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In this paper, we have used new data on mono-jet (j + /ET ) and mono-photon (γ + /ET )

final states to constrain a large class of dark matter models, namely those in which dark

matter–quark or dark matter–gluon interactions exist and can be described in the frame-

work of effective field theory. (We have discussed the validity of effective field theory,

and the modifications to our limits in cases where it is not valid, in sections 9.4 and 9.6,

see figures 9.7 and 9.10.)

Since events in which dark matter is produced have a harder /ET spectrum than Stan-

dard Model background processes, it is advantageous to use rather hard cuts on the jet or

photon transverse momentum and on the missing energy. We have confirmed this expec-

tation by comparing the sensitivity of mono-jet samples with different cuts (figure 9.3)

finding a clear advantage for the so called veryHighPT analysis. Using this ATLAS

mono-jet analysis we set strong limits on a variety of different types of dark matter cou-

plings (figure 9.4), in particular vector, axial vector, t-channel mediated scalar interaction

with quarks and interactions with gluons.

These limits can be converted into constraints on the dark matter–nucleon scattering

cross section measured in direct detection experiments (figure 9.5) and the dark matter

annihilation cross section (figure 9.6). For small dark matter mass, mχ ∼< 5 GeV, the LHC

provides the strongest constraints for all considered operators. At higher masses, direct

detection experiments still have an advantage if dark matter–nucleon scattering is spin-

independent. If dark matter couples primarily to gluons (for instance through a heavy

quark loop), the advantage is only marginal up to mχ ∼ 1 TeV, where LHC constraints

deteriorate rapidly due to the limited center of mass energy. For spin-dependent dark

matter–nucleon scattering, the LHC constraints surpass direct detection bounds by sev-

eral orders of magnitude for dark matter masses below the kinematic limit of the LHC.

It should be noted that the collider constraints do not suffer from any astrophysical un-
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certainties, such as the (unknown) abundance of DM in the Earth’s vicinity, or its velocity

distribution. Finally, we emphasize that if the DM–Standard Model coupling involves a

light mediator, as discussed in section 9.4, the collider bounds may become considerably

weakened. If a direct detection experiment, spin-independent or spin-dependent, were to

see an excess in apparent contradiction with these collider bounds, their existence would

allow us to infer the presence of a light mediator—a fact we would be unaware of without

these collider constraints.

As far as limits on dark matter annihilation are concerned, the LHC is able to rule out

dark matter with thermal relic cross sections for mχ ∼< 15 GeV for vector couplings to

quarks, and for mχ ∼< 70 GeV for axial vector couplings to quarks. Limits from the mono-

photon channel (figures 9.8 and 9.9) are somewhat weaker than those from the mono-jet

channel (figures 9.4 and 9.5), but not by much. Furthermore, since they probe a different

set of operators and suffer from different systematic uncertainties they provide a useful

complementary search channel giving insight into the couplings of DM should an excess

be found in either channel.

In the final section of this paper, we have considered a more specific type of dark mat-

ter, interacting through a “light mediator”, namely the Standard Model Higgs boson h. If

the decay channel h → χ̄χ is kinematically allowed, we have found that the most strin-

gent constraints on dark matter interactions can be derived from searches for invisible

Higgs decays in the Z + H and vector boson fusion (VBF) production channels. Amus-

ingly, for certain Higgs mass ranges, it is possible in this framework to also set lower limits

on dark matter–Standard Model interactions. In particular, if the Higgs boson has a mass

that is already excluded within the Standard Model, the model can be reconciled with the

data if the Higgs branching fraction into dark matter is sufficiently large, which limits the

dark matter–Higgs couplings from below. This lower bound on direct detection is already
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in conflict with bounds from XENON-100 for some regions of parameter space. Within

the Higgs-coupled DM framework, there is an interesting interplay between dark matter

searches and SM Higgs boson searches at the LHC. This interplay can be interesting and

non-trivial, both in the case of new bounds on the Higgs and in the case of a SM Higgs

discovery.

The analyses in this paper were carried out for the 7 TeV LHC on an integrated lumi-

nosity of at most 1.14 fb−1, a tiny fraction of what we hope to accumulate in the coming

years. The increased statistics, and higher center of mass energy, will improve not only

the ability to harden the cuts, making the analyses more sensitive to DM, but also bring

the systematic uncertainties under greater control. With dedicated analyses from both

LHC collaborations, as well as searches on the final Tevatron dataset, we can expect great

improvements on the bounds, or perhaps even the first observation of production of DM

in the lab.
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APPENDIX A

DETAILS FOR µ→ Eγ CALCULATION
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A.1 Matching 5D amplitudes to 4D EFTs

The standard procedure for comparing the loop-level effects of new physics on low-

energy observables is to work with a low-energy effective field theory in which the UV

physics contributes to the Wilson coefficient of an appropriate local effective operator by

matching the amplitudes of full and effective theories. In this appendix we briefly remark

on the matching of 5D mixed position/momentum space amplitudes to 4D effective field

theories, where some subtleties arise from notions of locality in the extra dimension.

The only requirement on the 5D amplitudes that must match to the 4D effective oper-

ator is that they are local in the four Minkowski directions. There is no requirement that

the operators should be local in the fifth dimension since this dimension is integrated over

to obtain the 4D operator. Thus the 5D amplitude should be calculated with independent

external field positions in the extra dimension. Heuristically, one can write this amplitude

as a nonlocal 5D operator

O5(x, zH , zL, zE, zA) = H5(x, zH) · L̄5(x, zL)σMN E5(x, zE)FMN(x, zA). (A.1.1)

Note that this object has mass dimension 8. In the 5D amplitude the fields are re-

placed by external state wavefunctions and this is multiplied by a “nonlocal coefficient”

c5(zH , zL, zE, zA) which includes integrals over internal vertices and loop momenta as well

as the mixed position/momentum space propagators to the external legs. To match with

the low-energy 4D operator we impose that the external states are zero modes and decom-

pose them into 4D zero-mode fields multiplied by a 5D profile f(z) of mass dimension

1/2,

Φ5(x, z)→ Φ(0)(x)f (0)(z). (A.1.2)

Further, we must integrate over each external field’s z-position. Thus the 4D Wilson coef-
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ficient and operator are given by

c4O4(x) =

∫ [∏
i

dzi

]
c5(zH , zE, zL, zA)f

(0)
H (zH)f

(0)
E (zE)f

(0)
L (zL)f

(0)
A (zA) H · L̄ σµν EFµν ,(A.1.3)

where the fields on the right-hand side are all zero modes evaluated at the local 4D point

x. Note that these indeed have the correct 4D mass dimensions, [O4] = 6 and [c] = −2.

Finally, let us remark that we have treated the 5D profiles completely generally. In

particular, there are no ambiguities associated with whether the Higgs field propagates in

the bulk or is confined to the brane. One can take the Higgs profile to be brane-localized,

fH(zH) ∼
√
R′δ(z −R′), (A.1.4)

where the prefactor is required by the dimension of the profiles. With such a profile (or

any limiting form thereof) the passage from 5D to 4D according to the procedure above

gives the correct matching for brane-localized fields.

A.2 Estimating the size of each diagram

As depicted in Figs. 2.2–2.4, there are a large number of diagrams contributing to the a

and b coefficients even when only considering the leading terms in a mass-insertion ex-

pansion. Fortunately, many of these diagrams are naturally suppressed and the dominant

contribution to each coefficient is given by the two diagrams shown in Fig. 2.5. This can

be verified explicitly by using the analytic expressions for the leading and next-to-leading

diagrams are given in Appendix A.3. In this appendix we provide some heuristic guide-

lines for estimating the relative sizes of these diagrams.
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A.2.1 Relative sizes of couplings

First note that after factoring out terms in the effective operator in (2.4.28), Yukawa

couplings give order one contributions while gauge couplings give an enhancement of

g2
SM lnR′/R, where gSM is the appropriate Standard Model coupling. This gives a factor of

∼ 5 (7) enhancement in diagrams with a W over those with a Z (H).

A.2.2 Suppression mechanisms in diagrams

Next one can count estimate suppressions to each diagram coming from the following

factors

A. Mass insertion, ∼ 10−1/insertion. Each fermion mass insertion on an internal line

introduces a factor of O(vR′). This comes from the combination of dimensionful

factors in the Yukawa interaction and the additional fermion propagator.

B1. Equation of motion, ∼ 10−4. Higgs diagrams without an explicit chirality-flipping

internal mass insertion must swap chirality using the muon equation of motion

ū(p)/p = mµu(p). This gives a factor of O(mµR
′) and is equivalent to external mass

insertion that picks up the zero-mode mass.

B2. External mass insertion, ∼ 10−1. Alternately, when a loop vertex is in the bulk,

an external mass insertion can pick up the diagonal piece of the propagator—see

(A.7.112)—representing the propagation of a zero mode into a ‘wrong-chirality’ KK

mode. Unlike the off-diagonal piece which imposes the equation of motion, this is

only suppressed by the O(vR′) mentioned above1. One can equivalently think of

this as an insertion of the KK mass which mixes the physical zero and KK modes.
1We thank Martin Beneke, Paramita Dey, and Jürgen Rohrwild for pointing this out.
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C. Higgs/Goldstone cancellation, ∼ 10−3. The H0 and G0 one-mass-insertion loops

cancel up toO ((m2
H −m2

Z)/m2
KK) because the two Goldstone couplings appear with

factors of i relative to the neutral Higgs couplings2.

D. Proportional to charged scalar mass, ∼ 10−2. The leading loop-momentum term

in the one-mass-insertion brane-localized H± loop cancels due to the form of the

photon coupling relative to the propagators. The gauge-invariant contribution from

such a diagram is proportional to (MWR
′)2. This is shown explicitly in (A.2.6) below.

To demonstrate the charged scalar mass proportionality, we note that the amplitude

for the one mass insertion charged Higgs diagram in Fig. 2.3 is

Mµ = −R2

(
R

R′

)6
ev√

2
fcLµY

3
∗ f−cEe

∫
d4k

(2π)4
ūp′∆

R
k ∆L

kup
(2k − p− p′)µ

[(k − p′)2 −M2
W ][(k − p)2 −M2

W ]
.(A.2.5)

Remembering that the 5D fermion propagators go like ∆ ∼ /k/k, this amplitude naı̈vely

appears to be logarithmically divergent. However, the Ward identity forces the form of

the photon coupling to the charged Higgs to be such that the leading order term in k2

cancels. This can be made manifest by expanding the charged Higgs terms in p and p′,

(2k − p− p′)µ
[(k − p′)2 −M2

W ][(k − p)2 −M2
W ]

=
(p+ p′)µ

(k2 −M2
W )2

[
k2

k2 −M2
W

− 1

]
=
M2

W (p+ p′)µ

(k2 −M2
W )3

,

(A.2.6)

where we have dropped terms of order O(m2
µ/M

2
W ). Thus see that the coefficient of the

gauge-invariant contribution is finite by power counting. After Wick rotation, this ampli-

tude takes the form

Mµ(1MIH±)
∣∣
(p+p′)

=
2i

16π2
(R′)2fcLµY

3
∗ f−cEe

ev√
2

(R′MW )2I1MIH± ūp′(p+ p′)up,

(A.2.7)

where I1MIH± is a dimensionless integral given in (A.3). We see that the amplitude indeed

carries a factor of (MWR
′)2.

2We thank Yuko Hori and Takemichi Okui for pointing this out.
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A.2.3 Dimensionless integrals

Estimating the size of dimensionless integrals over the loop momentum and bulk field

propagators (such as I1MIH±) is more subtle and is best checked through explicit calcula-

tion. However, one may develop an intuition for the relative size of these integrals.

Note that the fifth component of a bulk gauge field naturally has boundary con-

ditions opposite that of the four-vector [157] so that the fifth components of Standard

Model gauge fields have Dirichlet boundary conditions. This means that diagrams with a

W 5H±A vertex vanish since the brane-localized Higgs and bulk W 5 do not have overlap-

ping profiles. Further, loops with fifth components of Standard Model gauge fields and

internal mass insertions tend to be suppressed since the mass insertions attach the loop to

the IR brane. In the UV limit the loop shrinks towards the brane and has reduced overlap

with the fifth component gauge field.

Otherwise the loop integrals are typicallyO(0.1). The particular value depends on the

propagators and couplings in the integrand.

A.2.4 Robustness against equationment

As discussed in Section 2.5.2, the flavor structure of the diagrams contributing to the b co-

efficient is equationed with the fermion zero-mode mass matrix [28, 20, 18]. Contributions

to this coefficient vanish in the zero mode mass basis in the absence of additional flavor

structure from the bulk mass (c) dependence of the internal fermion propagators. The di-

agrams which generally give the largest contribution after passing to the zero mode mass

basis are those with with the strongest dependence on the fermion bulk masses. Since
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ψ(0) χ(n) ψ̄(n) ψ̄(m) χ(m) χ(0)

Figure A.1: equationment of the external mass insertion diagrams with Standard Model
gauge bosons. χ and ψ are left- and right-chiral Weyl spinors respectively. The gauge bo-
son vertices don’t change fermion chirality so that the internal fermion must be a chirality-
flipping KK mode. We have neglected the contribution where the external mass insertion
connects two zero mode fermions since this is suppressed by mµR

′.

zero mode fermion profiles are exponentially dependent on the bulk mass parameter, a

simple way to identify potential leading diagrams is to identify those which may have

zero mode fermions propagating in the loop.

This allows us to neglect diagrams with an external mass insertion and a 4D vector

boson in the loop. As shown in Fig. A.1, such diagrams do not permit intermediate zero

modes to leading order. Note, however, that diagrams with an external mass insertion

and the fifth component of gauge boson are allowed to have zero mode fermions in the

loop. Indeed, a diagram with a W 5 and W µ in the loop would permit zero mode fermions

but is numerically small due to the size of the W 5AW µ coupling. The dominant diagrams

for the b coefficient are the H±W± loop and the Z loop with an internal mass insertion. In

the KK reduction, the misequationment comes from diagrams with zero mode fermions

and KK gauge bosons.

A.3 Analytic expressions

We present analytic expressions for the leading and next-to-leading diagrams contribut-

ing to µ → eγ. We label the diagrams in Figs. 2.2–2.4 according to the number of Higgs-

induced mass insertions and the internal boson(s). For example, the two-mass-insertion

W diagram in Fig. 2.5a is referred to as 2MIW . Estimates for the size of each contribution
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are given in Appendix A.2. We shall only write the coefficient of the ūp′(p + p′)µup term

since this completely determines the gauge-invariant contribution.

A.3.1 Dominant diagrams

As discussed in Section 2.5, the leading diagrams contributing to the a and b coefficients

are

M(2MIW ) =
i

16π2
(R′)2fcLµYEY

†
NYNf−cEe

ev√
2

(
g2

2
ln
R′

R

)(
R′v√

2

)2

I2MIW

(A.3.8)

M(0MIHW ) =
i

16π2
(R′)

2
fcLYEf−cE

ev√
2

(
g2

2
ln
R′

R

)
I0MIHW , (A.3.9)

M(1MIZ) =
i

16π2
(R′)

2
fcLYEf−cE

ev√
2

(
gZLgZR ln

R′

R

)
I1MIZ , (A.3.10)

We have explicitly labeled the 4D (dimensionless) anarchic Yukawa matrices whose ele-

ments assumed to take values of order (YE)ij ∼ (YN)ij ∼ Y∗, but have independent flavor

structure. Note that we have suppressed the flavor indices of the Yukawas and the dimen-

sionless integrals. Diagrams with a neutral boson and a Yukawa structure YEY
†
EYE also

contribute to the a coefficient, but these contributions are suppressed relative to the dom-

inant charged boson diagrams above. These diagrams may become appreciable if one

permits a hierarchy in the relative YE and YN anarchic scales, in which case one should

also consider the Z boson diagrams whose analytic forms are given below. The dimen-
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sionless integrals are

I2MIW = −3

2

∫
dy dx1dx2dx3 y

3

(
y

x1

)cL+2(
y

x2

)4(
y

x3

)
F̃L1y

+,y F̃
Ryy
−,y D̃−F̃

Ly2
−,y F̃

L2yµ
+,yµ

∂

∂kE

(
G13
y G

32
y

)
(A.3.11)

I0MIHW =

∫
dy dx

(y
x

)2+cL
( 1

2
√

2

y2

y2 +m2
HR

′2 F̃
L1y
+,y y ∂kE G

xy
y

)
(A.3.12)

I1MIZ = −
∫

dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)2−cE ( y

x3

)4 (
y ∂kEG

12
)
y2 ×(

− D̃+F̃
R23
+,y D̃−F̃

R3y
−,y F̃

Ly1
+,y + F̃R2x3

−,y F̃R3y
−,y F̃

Ly1
+,y

−F̃R2y
−,y D̃−F̃

Ly3
−,y D̃+F̃

L31
+,y + F̃R2y

−,y F̃
Ly3
+,y F̃

L31
+,y

)
. (A.3.13)

where x = kEz, y = kER
′, and yµ = mµR

′. The significance of these dimensionless vari-

ables is discussed below (2.6.52). The dimensionless Euclidean-space propagator func-

tions F̃ are defined in (B.1.2 – B.1.3), where the upper indices of the F functions define

the propagation positions. For example, FR3y represents a propagator from z = R′ to

z = z3. Similarly, Gy and Ḡy are defined in (B.1.7) and (B.1.8).

A.3.2 Subdominant a coefficient diagrams

The diagrams containing a brane-localized Higgs loop are

M(nMIH±) =
i

16π2
(R′)

2
fcLYEY

†
NYNf−cE

ev√
2
InMIH± , (A.3.14)

M(nMIH0) =
i

16π2
(R′)

2
fcLYEYEY

†
Ef−cE

ev√
2
I0MIH0 . (A.3.15)
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Here n = 0, 1 counts the number of internal mass insertions in the diagram. The gauge

boson loops are

M(nMIZ(5)) =
i

16π2
(R′)

2
fcLYEY

†
EYEf−cE

ev√
2

(
gZLgZR ln

R′

R

) (
v√
2
R′
)2

InMIZ(5) ,

(A.3.16)

M(2MIww) =
i

16π2
(R′)

2
fcLYEY

†
NYNf−cE

ev√
2

(
g2

2
ln
R′

R

) (
v√
2
R′
)2

× I2MIww.

(A.3.17)

Where n = 2, (1 + 2), 3 with (1 + 2) referring to a single internal mass insertion and two

external mass insertions. 2MIww represents 2MIW 5W 5, 2MIWW 5 and 2MIW 5W . The
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dimensionless integrals are

I1MIH0 =

∫
dy dx y2

(y
x

)4 [
− 2F̃Lyx

+,y F̃
Lxy
+,y F̃

Ryy
−,y

y2

y2 + (MHR′)2

+ F̃Lyx
+,y F̃

Lxy
+,y F̃

Ryy
−,y

y4

(y2 + (mHR′)2)2

− 1

2

(
y ∂kE F̃

Lyx
+,y

)
F̃Lxy

+,y F̃
Ryy
−,y

y2

y2 + (MHR′)2

− 1

2

(
y ∂kED̃−F̃

Lyx
−,y

)
D̃+F̃

Lxy
+,y F̃

Ryy
−,y

1

y2 + (MHR′)2

+ 2F̃Lyy
+,y D̃+F̃

Ryx
+,y D̃−F̃

Rxy
−,y

1

y2 + (MHR′)2

− F̃Lyy
+,y D̃+F̃

Ryx
+,y D̃−F̃

Rxy
−,y

y2

(y2 + (MHR′)2)2

+
1

2

(
y ∂kE F̃

Lyy
+,y

)
D̃+F̃

Ryx
+,y D̃−F̃

Rxy
−,y

1

y2 + (MHR′)2

+ F̃Lyy
+,y F̃

Ryx
−,y F̃

Rxy
−,y

y2

y2 + (MHR′)2

+
1

2

(
y ∂kE F̃

Lyy
+,y

)
F̃Ryx
−,y F̃

Rxy
−,y

y2

y2 + (MHR′)2

+
1

2
F̃Lyy

+,y

(
y ∂kE F̃

Ryy
−,y

)
F̃Rxy
−,y

y2

y2 + (MHR′)2

+
1

2
F̃Lyy

+,y

(
y ∂kED̃+F̃

Ryx
+,y

)
D̃−F̃

Rxy
−,y

1

y2 + (MHR′)2
,
]
. (A.3.18)

I1MIH± =

∫
dy F̃Lyy

+,y F̃
Ryy
+,y

2 y5

(y2 + (MWR′)2)3
(A.3.19)

I0MIH± =

∫
dy F̃Ryy

−,y
y5

(y2 + (MHR′)2)3
(A.3.20)

I0MIH0 =

∫
dy dx y2

(y
x

)4

F̃Lyx
+,y F̃

Lxy
+,y

y2

(y2 + (MHR′)2)2
(A.3.21)

I2MIZ =

∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)4 (
y

x3

)4

×{
y ∂kE G

13
y D̃+F̃

L3yµ
+,yµ

[
y2
(
F̃L12

+,y F̃
L2y
+,y F̃

Ryy
−,y D̃−F̃

Ly3
−,y

+ F̃L1y
+,y F̃

Ry2
−,y F̃

R2y
−,y D̃−F̃

Ly3
−,y + F̃L1y

+,y F̃
Ryy
−,y D̃−F̃

R2y
−,y F̃

L23
−,y

+ F̃L1y
+,y F̃

Ryy
−,y F̃

Ly2
+,y D̃−F̃

L23
−,y

)
−
(
D̃−F̃

L12
−,y D̃+F̃

L2y
+,y F̃

Ryy
−,y D̃−F̃

Ly3
−,y

+ F̃L1y
+,y D̃+F̃

Ry2
+,y D̃−F̃

R2y
−,y D̃+F̃

Ly3
+,y

)]}
, (A.3.22)

279



I2MIZ5 = −
∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)4 (
y

x3

)4

× 1

2

[
y ∂kE Ḡ

13
y D̃+F̃

L3yµ
+,yµ

(
y2 F̃L12

−,y D̃+F̃
L2y
+,y F̃

Ryy
+,y

)]
, (A.3.23)

I(1+2)MIZ = −
∫
dy dx1dx2dx3

(
y

x1

)4 (
y

x2

)4 (
y

x3

)4

×
[
D̃+F̃

Rye1
+,ye D̃+F̃

L2yµ
+,yµ G

21
y − (4 + y ∂kE)

(
D̃−F̃

R1y
−,y F̃

R3y
−,y D̃−F̃

L32
−,y

+ F̃R13
+,y D̃−F̃

R3y
−,y D̃−F̃

L32
−,y + D̃−F̃

R1y
−,y D̃−F̃

Ly3
−,y F̃

L32
−,y

+ D̃−F̃
R1y
−,y F̃

Ly3
+,y D̃−F̃

L32
−,y

)]
, (A.3.24)

I(1+2)MIZ5 = −
∫
dy dx1dx2dx3

(
y

x1

)4 (
y

x2

)4 (
y

x3

)4

D̃+F̃
Rye1
+,ye D̃+F̃

L3yµ
+,yµ Ḡ

13
y

× 1

2

[
F̃R12
−,y y ∂kE

(
F̃R2y
−,y F̃

Ly3
+,y

)
+ y ∂kE

(
D̃+F̃

R12
+,y

)
D̃−F̃

R2y
−,y F̃

Ly3
+,y

+ F̃R1y
−,y D̃−F̃

Ly2
−,y y ∂kE

(
D̃+F̃

L23
+,y

)
+ y ∂kE

(
y2 F̃R1y

−,y F̃
Ly2
+,y

)
F̃L23

+,y

]
,

(A.3.25)

The integral for 3MIZ and 3MIZ5 can be written as

I3MIZ/Z5 = 1
2

∫
dy dx1dx2dx3

(
y
x1

)2+cL
(
y
x2

)2−cE (
y
x3

)4

G13
y

8∑
i=1

Mi y ∂kE Ni.

(A.3.26)

For 3MIZ, the (M,N) pairs are(
M1 , N1

)
=
(
F̃L12

+,y , y
4 F̃L2y

+,y F̃
Ryy
−,y F̃

Lyy
+,y F̃

Ry3
−,y

)
, (A.3.27)(

M2 , N2

)
=
(
−y2 D̃+F̃

L2y
+,y F̃

Ryy
−,y F̃

Lyy
+,y F̃

Ry3
−,y , D̃−F̃

L12
−,y

)
, (A.3.28)(

M3 , N3

)
=
(
−y2 F̃R2y

−,y F̃
Lyy
+,y F̃

Ry3
−,y , −y2 F̃L1y

+,y F̃
Ry2
−,y

)
, (A.3.29)(

M4 , N4

)
=
(
F̃L1y

+,y D̃+F̃
Ry2
+,y , −y2 D̃−F̃

R2y
−,y F̃

Lyy
+,y F̃

Ry3
−,y

)
, (A.3.30)(

M5 , N5

)
=
(
−y2 F̃L1y

+,y F̃
Ryy
−,y F̃

Ly2
+,y , −y2 F̃L2y

+,y F̃
Ry3
−,y

)
, (A.3.31)(

M6 , N6

)
=
(
D̃+F̃

L2y
+,y F̃

Ry3
−,y , −y2 F̃L1y

+,y F̃
Ryy
−,y D̃−F̃

Ly2
−,y

)
, (A.3.32)(

M7 , N7

)
=
(
F̃R23
−,y , y4 F̃L1y

+,y F̃
Ryy
−,y F̃

Lyy
+,y F̃

Ry2
−,y

)
, (A.3.33)(

M8 , N8

)
=
(
−y2 F̃L1y

+,y F̃
Ryy
−,y F̃

Lyy
+,y D̃+F̃

Ry2
+,y , D̃−F̃

R23
−,y

)
. (A.3.34)
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For 3MIZ5, the (M,N) pairs are

(
M1 , N1

)
=
(
−y2 D̃+F̃

L1y
+,y F̃

Ryy
−,y F̃

Lyy
+,y F̃

Ry2
−,y , D̃+F̃

R23
+,y

)
, (A.3.35)(

M2 , N2

)
=
(
F̃R23

+,y , −y2 D̃+F̃
L1y
+,y F̃

Ryy
−,y F̃

Lyy
+,y D̃+F̃

Ry2
+,y

)
, (A.3.36)(

M3 , N3

)
=
(
D̃+F̃

L1y
+,y F̃

Ryy
−,y D̃−F̃

Ly2
−,y , D̃+F̃

L2y
+,y D̃+F̃

Ry3
+,y

)
, (A.3.37)(

M4 , N4

)
=
(
F̃L2y

+,y D̃+F̃
Ry3
+,y , −y2 D̃+F̃

L1y
+,y F̃

Ryy
+,y F̃

Ly2
+,y

)
, (A.3.38)(

M5 , N5

)
=
(
D̃+F̃

L1y
+,y F̃

Ry2
−,y , −y2 F̃R2y

−,y F̃
Lyy
+,y D̃+F̃

Ry3
+,y

)
, (A.3.39)(

M6 , N6

)
=
(
D̃−F̃

R2y
−,y F̃

Lyy
+,y D̃+F̃

Ry3
+,y , D̃+F̃

L1y
+,y D̃+F̃

Ry2
+,y

)
, (A.3.40)(

M7 , N7

)
=
(
F̃L12
−,y , −y2 D̃+F̃

L2y
+,y F̃

Ryy
−,y F̃

Lyy
+,y D̃+F̃

Ry3
+,y

)
, (A.3.41)(

M8 , N8

)
=
(
−y2 F̃L2y

+,y F̃
Ryy
−,y F̃

Lyy
+,y D̃+F̃

Ry3
+,y , D̃+F̃

L12
+,y

)
. (A.3.42)

The integrals for the W 5 loops are

I2MIW5W5 = −
∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)4 (
y

x3

)
×
{1

2
y2 D̃+F̃

L1y
+,y F̃

Ryy
−,y F̃

Ly2
+,y D̃+F̃

L2yµ
+,yµ

[
4 Ḡ13

y Ḡ23
y + y ∂kE

(
Ḡ13
y Ḡ23

y

)]}
,

(A.3.43)

I2MIW5W = −
∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)4 (
y

x3

)
×
[1

2
y2 F̃L1y

+,y F̃
Ryy
−,y F̃

Ly2
+,y D̃+F̃

L2yµ
+,yµ

(
y ∂kE G

13
y ∂z Ḡ

23
y − y ∂kE∂z G13

y Ḡ23
y

)]
,

(A.3.44)

I2MIWW5 = −
∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)4 (
y

x3

)
×
[1

2
D̃+F̃

L1y
+,y F̃

Ryy
−,y D̃−F̃

Ly2
−,y D̃+F̃

L2yµ
+,yµ

(
y ∂kE G

23
y ∂z Ḡ

13
y − y ∂kE∂z G23

y Ḡ13
y

)]
.

(A.3.45)
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A.3.3 Subdominant b coefficient diagrams

M(nMIZ /Z5) = i
16π2 (R′)2 fcLYEf−cE

ev√
2

(
gZLgZR ln R′

R

)
InMIZ /Z5 , (A.3.46)

M(0MIW ) = i
16π2 (R′)2 fcLYEf−cE

ev√
2

(
g2

2
ln R′

R

)
I0MIW , (A.3.47)

M(0MIW 5)t = i
16π2 (R′)2fcLµYEf−cEe

ev√
2

(
g2

2
ln R′

R

)
I0MIW 5 (A.3.48)

where n = 0, 1 counts the number of internal mass insertions.

I1MIZ5 =

∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)2−cE ( y

x3

)4

× 1

2

[
F̃L13
−,y y ∂kE

(
D̃+F̃

L3y
+,y D̃+F̃

Ry2
+,y

)
Ḡ12
y − D̃+F̃

L13
+,y y ∂kE

(
F̃L3y

+,y D̃+F̃
Ry2
+,y Ḡ

12
y

)
− 4 D̃+F̃

L13
+,y F̃

L3y
+,y D̃+F̃

Ry2
+,y Ḡ

12
y + D̃+F̃

L1y
+,y F̃

Ry3
−,y

(
y ∂kE D̃+F̃

R32
+,y

)
Ḡ12
y

− D̃+F̃
L1y
+,y D̃+F̃

Ry3
+,y y ∂kE

(
F̃R32

+,y Ḡ
12
y

)
− 4 D̃+F̃

L1y
+,y D̃+F̃

Ry3
+,y F̃

R32
+,y Ḡ

12
y

]
.

(A.3.49)

I0MIZ =

∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)4 (
y

x3

)4

× y ∂kE G
13
y D̃+F̃

L3yµ
+,yµ

(
D̃−F̃

L12
−,y F̃

L23
−,y + F̃L12

+,y D̃−F̃
L23
−,y

)
, (A.3.50)

I0MIZ5 = −
∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)4 (
y

x3

)4

×
{1

4
D̃+F̃

L23
+,y D̃+F̃

L3yµ
+,yµ

[
F̃L12
−,y

(
4Ḡ13

y + y ∂kE Ḡ
13
y

)
+ y ∂kE F̃

L12
−,y Ḡ

13
y

]}
, (A.3.51)

I0MIW = −
∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

) (
y

x3

)4

× 3

2
y ∂kE

(
G13
y G32

y

)
D̃−F̃

L12
−,y D̃LF̃

+3yµ
L,yµ

(A.3.52)

I0MIW 5 =

∫
dy dx1dx2dx3

(
y

x1

)cL+2(
y

x2

)4(
y

x3

)
{
y

2
F̃L1y

+,y D̃+F̃
L2yµ
+,yµ

(
∂

∂kE

∂

∂x3

G13
y

)
Ḡ32
y +

y

2
F̃L12

+,y D̃+F̃
L2yµ
+,yµ

(
∂

∂kE

∂

∂x3

G32
y

)
Ḡ13
y

−D̃+F̃
L12
+,y D̃+F̃

L2yµ
+,yµ

[
2Ḡ13

y Ḡ
23
y +

y

2

∂

∂kE

(
Ḡ13
y Ḡ

32
y

)]}
. (A.3.53)
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A.3.4 Custodial Models

For custodially protected models, one must include loops with the custodial partners of

fermions and gauge bosons. See, e.g., [31] for details of the additional field content of

such models. The new particles have mixed boundary conditions, (−+) or (+−). For the

chirality flipping process µ→ e γ, Yukawa insertions on the IR brane only allow fermions

carrying either (++) or (−+) boundary conditions running in the loop. This limits the

number of the new diagrams to be considered. The new fermion propagators can be

obtained by making the replacement F̃ → Ẽ. Writing the boundary condition in terms

of the Weyl components of the Dirac spinor, ẼL corresponds to the boundary condition(
ψ(+−), χ̄(−+)

)
, while ẼR corresponds to

(
ψ(−+), χ̄(+−)

)
. For x > x′, the Ẽ-functions can be

written as follows:

ẼL
− =

(xx′)5/2

y5

Sc(x−, y−)Tc(x
′
−, wy+)

Tc(y−, wy+)
, ẼL

+ = −(xx′)5/2

y5

Tc(x+, y−)Sc(x
′
+, wy+)

Tc(y−, wy+)
,

(A.3.54)

ẼR
− = −(xx′)5/2

y5

Tc(x−, y+)Sc(x
′
−, wy−)

Tc(y+, wy−)
, ẼR

+ =
(xx′)5/2

y5

Sc(x+, y+)Tc(x
′
+, wy−)

Tc(y+, wy−)
.

(A.3.55)

The x < x′ expressions are obtained by replacing x ↔ x′. Gauge bosons with (−+)

boundary conditions can also appear in custodial loops. The corresponding propagator

for x > x′ is G→ H with

Hk(x, x
′) =

(R′)2

R

xx′

y

T10(x, y)S11(x′, wy)

T10(wy, y)
. (A.3.56)

The T and S are defined in Appendix. (A.5), and the x < x′ case can be obtained by

x↔ x′.
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A.4 Position, momentum, and position/momentum space

In order to elucidate the power counting in Section 2.6 and to provide some motivation

for the structure of the propagators in Appendix A.6.1, we review the passage between

Feynman rules in position, momentum, and mixed position/momentum space. For sim-

plicity we shall work with massless scalar fields on a flat (Minkowski) d-dimensional

background, but the generalization of the salient features to higher spins is straightfor-

ward. In position space, the two-point Green’s function for a particle propagating from

x′ to x is

D(x, x′) =

∫
d̄ dk

i

k2
e−ik·(x−x

′), (A.4.57)

a momentum-space integral over a power-law in k times a product of exponentials in k ·x

and k ·x′. Each vertex carries a ddx integral representing each spacetime point at which the

interaction may occur. When some dimensions are compact, the associated integrals are

reverted to discrete sums and the particular linear combination of exponentials is shifted

to maintain boundary conditions. Further, when dimensions are warped the exponentials

become Bessel functions. In this Appendix we will neglect these differences and focus on

general features since the UV behavior of each of the aforementioned scenarios (i.e. for

momenta much larger than any mass, compactification, or warping scales) reduces to the

flat noncompact case presented here.

In 4D it is conventional to work in full momentum space where the Feynman rules

are derived by performing the ddx integrals at each vertex over the exponential functions

from each propagator attached to the vertex and amputating the external propagators.

This generates a momentum-conserving δ-function at each vertex which can be used to

simplify the d̄ dk integrals in each propagator. For each diagram one such δ-function im-

poses overall conservation of the external momenta and hence has no dependence on
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any internal momenta. For a loop diagram this means that there is a leftover d̄ dk which

corresponds to the integration over the loop momentum. Thus the momentum space for-

malism involves separating the exponentials in k · x from the rest of the Green’s function

and performing the ddx integral to obtain δ-functions.

To go to the mixed position/momentum space formalism we pick one direction, z,

and leave the dependence on that position in the propagator while integrating over the

z-component of the momentum, kz in (A.4.57). We shall write the Minkowski scalar prod-

uct of the (d − 1) momentum-space directions as k2 so that the full d-dimensional scalar

product is k2 − k2
z . The Feynman rule for each vertex now includes an explicit dz in-

tegral which must be performed after including each of the position/momentum space

propagators, which take the form

∆(k, z, z′) =

∫
d̄ kz

i

k2 − k2
z

eikz(z−z′). (A.4.58)

The (d − 1) other exponentials and momentum integrals are accounted in the usual

momentum-space formalism. This object goes like ∆ ∼ 1/k, which indeed has the correct

dimensionality for the sum over a KK tower of scalar propagators. Similarly, the massless

bulk fermion propagator is

∆(k, z, z′) =

∫
d̄ kz

i(/k − kzγ5)

k2 − k2
z

eikz(z−z′), (A.4.59)

where we may now identify the scalar functions F ∼ dkze
ikz(z−z′)/(k2−k2

z) in (A.6.76) and

(A.6.93).

It is thus apparent that the mixed formalism contains all of the same integrals and fac-

tors as the momentum-space formalism, but that these are packaged differently between

vertex and propagator Feynman rules. By identifying features between the two pictures

one may glean physical intuition in one picture that is not manifest in the other. For

example, the observation in the mixed formalism that each bulk vertex on a loop brings
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p1

p2

p3

k2

k3

k1

z1

z2

z3

Figure A.2: A simple loop diagram to demonstrate the power counting principles pre-
sented. The lines labeled pi represent the net external momentum flowing into each vertex
so that pzi corresponds to the KK mass of the ith external particle.

down a power of 1/k is straightforwardly understood to be a manifestation of momentum

conservation in the momentum space picture.

On the other hand, the mixed formalism is much more intuitive for brane-localized

effects. Interactions with fields on the brane at z = L carry δ(z − L) factors in the vertex

Feynman rules. Such interactions violate momentum conservation in the z-direction. In

the KK formalism this manifests itself as the question of when it is appropriate to sum

over an independent tower of KK modes. This is easily quantified in the mixed formalism

since the dz integrals are not yet performed in the Feynman rules and we may directly

insert δ(z − L) terms in the expression for the amplitude.

As a concrete example, consider the loop diagram with three vertices shown in

Fig. A.2. It is instructive to explicitly work out loop z-momentum structure of this di-

agram in the case where all vertices are in the bulk and observe how this changes as

vertices are localized on the brane. To simplify the structure, let us define the product of

momentum-space propagators

f(k1, k2, k3) ≡
3∏
i=1

i

k2
i − (kzi )

2
. (A.4.60)
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Using
∫
dz exp(izk) = δ(k), the bulk amplitude is proportional to

M ∼
∫
dz1 dz2 dz3 dk

z
1 dk

z
2 dk

z
3 f(k1, k2, k3) eiz1(k1+p1−k2)z eiz2(k2+p3−k3)z eiz3(k3+p3−k1)z

(A.4.61)

∼
∫
dz2 dz3 dk

z
2 dk

z
3 f(k2 − p1, k2, k3) eiz2(k2+p3−k3)z eiz3(k3+p3−k2+p1)z (A.4.62)

∼
∫
dz3 dk

z
3 f(k3 − p2 − p1, k3 − p2, k3) eiz3(p1+p2+p3)z . (A.4.63)

We have implicitly performed the associated d(d−1)x integrals at each step. The final dz3 in-

tegral gives the required δ-function of external momenta while leaving an unconstrained

dkz3 loop integral. Each dkz/(k2−k2
z) ∼ 1/k represents the entire KK tower associated with

an internal line. The removal of two dkz integrals by δ-functions is a manifestation of the

1/k suppression coming from each dz integral with the caveat that the “last” dz integral

only brings down powers of external momenta and hence does not change the power of

loop momenta. This explains the “overall z-momentum” contribution to the superficial

degree of divergence in Section 2.6.2.

Next consider the case when the z3 vertex is brane localized so that its Feynman rule is

proportional to δ(z3 − L). This only affects the last line of the simplification by removing

the dz3 integral. Physically this means that z-momentum (KK number) needn not be

conserved for this process. Since the z3 exponential is independent of any loop momenta,

this does not affect the superficial degree of divergence.

On the other hand, if z2 is also brane localized, then the δ(z2 − L) from the vertex

prevents the dz2 integral in the second line from giving the δ(k2 + p2 − k3) that cancels

the dkz2 integral. Thus the process has an additional dkz2 integral which now increases the

degree of divergence. In the 4D formalism this is manifested as an additional independent

sum over KK states. It is now also clear that setting z1 to be brane localized prevents the

dkz1 from being cancelled and hence adds another unit to the degree of divergence. This
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counting is trivially generalized to an arbitrary number of vertices and different types of

internal propagators. For a loop with V vertices, VB of which are in the bulk, the key

points are:

1. If V = VB, then the dz integrals reduce the superficial degree of divergence by (VB−

1).

2. If, on the other hand, V > VB so that there is at least one brane-localized vertex, then

the dz integrals reduce the superficial degree of divergence by VB.

Intuitively the z-momentum nonconservation coming from brane-localized interac-

tions can be understood as the particle picking up an arbitrary amount of momentum as

it bounces off the brane (a similar picture can be drawn for the orbifold [218]). Alternately,

it reflects the uniform spread in momentum associated with complete localization in z-

position. While this may seem to imply sensitivity to arbitrarily high scale physics on the

brane, a negative degree of divergence will prevent the loop from being sensitive to UV

physics. In other words, we are free to treat brane-localized fields as having δ-function

profiles independent of the physics that generates the brane.

Finally, note that we have assumed that each fermion mass insertion is brane localized.

In 5D this means that higher-order diagrams in the fermion mass-insertion approxima-

tion are not suppressed by momentum since each additional brane-to-brane propagator

goes like ∼ /k/k after accounting for the dkz integrals. Instead, these mass insertions

are suppressed only by the relative sizes of the Higgs vev and compactification scale,

(vR′)2 ∼ .01. It is perhaps interesting to note that our analysis further suggests that in 6D

with a Higgs localized on a 4D subspace, there are two additional momentum integrals

coming from a mass insertion so that each vev-to-vev propagator goes like a positive

power of the momentum ∼ /k causing the mass-insertion approximation to break down.
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A.5 Bulk Feynman Rules

Here we summarize the 5D position/momentum space Feynman rules used to derive the

amplitudes in this paper. All couplings are written in terms of 5D quantities. The brane-

localized Higgs field is drawn as a dashed line and the fifth component of a bulk gauge

boson is drawn as a dotted line.

= ig5

(
R

z

)4

γµ

= ie5(p+ − p−)µ

=
i

2
e5g5 v η

µν

= i

(
R

R′

)3

Y5

= ∆k(z, z
′)

= −iηµνGk(z, z
′)

= iḠk(z, z
′)

= εµ(q)f
(0)
A

=
fc√
R′

( z
R

)2 ( z
R′

)−c
u(p)

= ū(p′)
fc√
R′

( z
R

)2 ( z
R′

)−c

The 5D Lagrangian parameters are related to the usual Standard Model parameters by

g2
5 = g2

SMR lnR′/R (A.5.64)

e5f
(0)
A = eSM (A.5.65)

Y5 = RY, (A.5.66)

where Y represents an anarchic 4D Yukawa matrix that is related to the Standard Model

Yukawa by (3.2.7). The fc fermion flavor functions are defined in (3.2.5). The vector prop-

agator functions Gk(z, z
′) and Ḡk(z, z

′) are explicitly derived in [329], which also contains

generic formulae for analogous functions for fields of general spin and additional gauge
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boson vertices. Using the dimensionless x and y variables defined in (2.6.52) and assum-

ing z > z′, the Euclidean space vector Green’s functions are

Gk(z, z
′) =

(R′)2

R
Gy(x, x

′) =
(R′)2

R

xx′

y

T10(x, y)T10(x′, wy)

S00(wy, y)
, (A.5.67)

Ḡk(z, z
′) =

(R′)2

R
Ḡy(x, x

′) =
(R′)2

R

xx′

y

S00(x, y)S00(x′, wy)

S00(wy, y)
, (A.5.68)

where

Tij(x, y) = Ii(x)Kj(y) + Ij(y)Ki(x) (A.5.69)

Sij(x, y) = Ii(x)Kj(y)− Ij(y)Ki(x) (A.5.70)

and w = R/R′. For z < z′ the above formula is modified by x ↔ x′. The three gauge

boson couplings are given by
Aµ

W+
ν W−

ρ

= ie5
R

z

[
(k − k+)ρηµν + (k− − k)νηµρ + (k+ − k−)µηνρ

]

Aµ

W+
5 W−

5

= ie5
R

z
(k− − k+)µ

Aµ

W+
ν W−

5

= e5
R

z
ηµν(∂z − ∂+

z )

Here we have used the convention where all momenta are labeled by the charge of the

particle and are flowing into the vertex. TheAµW+
5 W

−
ν vertex is given by e5(R/z)ηµν(∂µz −

∂z). The Euclidan space fermion propagator ∆k(z, z
′) is given in (B.1.1).
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A.6 Derivation of fermion propagators

General formulae for the scalar function associated with bulk propagators of arbitrary-

spin fields in RS can be found in [329]. The special case of bulk fermion propagators

with endpoints on the UV brane is presented in [143]. The Green’s function equation

for the general RS fermion propagator can be solved directly from the Strum-Liouville

equation, though this can obscure some of the intuition of the results. Here we provide a

pedagogical derivation of the 5D bulk fermion propagator in a flat and warped interval

extra dimension. See also the discussion in Appendix A.4 which relates this construction

to the usual pure momentum space formalism.

A.6.1 Flat 5D fermion propagator

First we derive the chiral fermion propagator in a flat interval extra dimension z ∈ (0, L)

as a model calculation for the warped fermion propagator which is presented in Ap-

pendix A.6.2. A complete set of propagators for a flat 5D interval was derived in [325]

using finite temperature field theory techniques.

We derive these results by directly solving the Green’s function equations. The propa-

gator from a given point x′ to a another point x is given by the two-point Green’s function

of the 5D Dirac operator,

D∆(x, x′) ≡
(
iγM∂M −m

)
∆(x, x′) = iδ(5)(x− x′), (A.6.71)

where M runs over 5D indices. We shall treat the noncompact dimensions in momentum

space and the finite dimension is in position space. In this formalism, the Green’s function
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equation is (
/p+ i∂5γ

5 −m
)

∆(p, z, z′) = iδ(z − z′), (A.6.72)

where we use γ5 = diag(i12,−i12).

This is a first-order differential equation with nontrivial Dirac structure. To solve this

equation we define a pseudo-conjugate Dirac operator (which is neither a complex nor

Hermitian conjugate),

D̄ = iγM∂M +m. (A.6.73)

Using this to “square” the Dirac operator, we can swap the Dirac equation for a simpler

Klein-Gordon equation that is second order and diagonal on the space of Weyl spinors,

DD̄ =

∂2
5 − ∂2 −m2

∂2
5 − ∂2 −m2

 . (A.6.74)

It is straightforward to solve for the Green’s functions F (p, z, z′) of the DD∗ operator in

mixed position/momentum space,

DD̄F (p, z, z′) =

∂2
5 + p2 −m2

∂2
5 + p2 −m2


F−

F+

 = iδ(z − z′).

(A.6.75)

From these we can trivially construct a solution for the Green’s function of (A.6.71),

∆(p, z, z′) ≡ D̄F (p, z, z′) =

(−∂5 +m)F− σµpµF+

σ̄µpµF− (∂5 +m)F+

 . (A.6.76)

We solve this by separating F±(z) into pieces

F±(p, z, z′) =


F<
± (p, z, z′) ifz < z′

F>
± (p, z, z′) ifz > z′

(A.6.77)
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and then solving the homogeneous Klein-Gordon equations for each F< and F>. The

general solution is

F<,>
± (p, z, z′) = A<,>± cos(χpz) +B<,>

± sin(χpz), (A.6.78)

where the eight coefficients A<,>± and B<,>
± are determined by the boundary conditions at

0, L and z′. The factor χp is the magnitude of p5 and is defined by

χp =
√
p2 −m2. (A.6.79)

We impose matching boundary conditions at z = z′. By integrating the Green’s func-

tion equation (A.6.75) over a sliver z ∈ [z′ − ε, z′ + ε] we obtain the conditions

∂5F
>
± (z′)− ∂5F

<
± (z′) = i, (A.6.80)

F>
± (z′)− F<

± (z′) = 0. (A.6.81)

These are a total of four equations. The remaining four equations imposed at the branes

impose the chirality of the fermion zero mode and are equivalent to treating the interval

as an orbifold. We denote the propagator for the 5D fermion with a left-chiral (right-

chiral) zero mode by ∆L (∆R). We impose that the Green’s function vanishes if a “wrong-

chirality” state propagates to either brane,

PR ∆L(p, z, z′)
∣∣
z=0,L

= PRD̄ FL(p, z, z′)
∣∣
z=0,L

= 0, (A.6.82)

PL ∆R(p, z, z′)
∣∣
z=0,L

= PLD̄ FR(p, z, z′)
∣∣
z=0,L

= 0, (A.6.83)

where PL,R = 1
2
(1 ∓ iγ5) are the usual 4D chiral projection operators. Note from (A.6.76)

that each of these equations is actually a set of two boundary conditions on each brane.

For example, the left-handed boundary conditions may be written explicitly as

FL
−(p, z, z′)

∣∣
z=0,L

= 0, (A.6.84)

(∂5 +m)FL
+(p, z, z′)

∣∣
z=0,L

= 0, (A.6.85)
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AL<+ = sp(L− z′)spL AL>+ = spz
′cpL AR<+ = 0 AR>+ = −cpz

′spL

BL<
+ = 0 BL>

+ = spz
′spL BR<

+ = −cp(L− z′) BR>
+ = −cpz

′cpL

AL<− = 0 AL>− = −cpz
′spL AR<− = sp(L− z′) AR>− = −spz

′cpL

BL<
− = cp(L− z′) BL>

− = −cpz
′cpL BR<

− = 0 BR>
− = spz

′spL

Table A.1: Flat case coefficients in (A.6.78) upon solving with the boundary conditions
(A.6.80–A.6.83). We have used the notation cpx = cosχpx and spx = sinχpx.

where we have used that pµ is arbitrary. It is well-known that only one boundary condi-

tion for a Dirac fermion needs to be imposed in order not to overconstrain the first-order

Dirac equation since the bulk equations of motion convert boundary conditions for χ

into boundary conditions for ψ [154]. In this case, however, we work with a second-order

Klein-Gordon equation that does not mix χ and ψ. Thus the appearance and necessity

of two boundary conditions per brane for a chiral fermion is not surprising; we are only

converting the single boundary condition on ∆(p, z, z′) into two boundary conditions for

F (p, z, z′).

Solving for the coefficients A<,>± (p, z) and B<,>
± (p, z) for each type of fermion (left- or

right-chiral zero modes) one finds the results in Table A.1. Using trigonometric identities

one may combine the z < z′ and z > z′ results to obtain3

FX
± =

−i cosχp (L− |z − z′|) + γ5℘X cosχp (L− (z + z′))

2χp sinχpL
, (A.6.86)

where X = {L,R}with ℘L = +1 and ℘R = −1. The fermion Green’s function can then be

obtained trivially from (A.6.76).

Let us remark that the leading UV behavior of a brane-to-brane propagator (where the

k5γ
5 term vanishes) goes like

∆ ∼ /k

χk
. (A.6.87)

3This result differs from that of [325] by a factor of 2 since that paper treats the compactified space as an
orbifold over the entire S1 rather than just an interval [0, πR].
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A.6.2 Warped 5D fermion propagator

We now derive the chiral fermion propagator in a warped interval extra dimension fol-

lowing the same strategy as Appendix A.6.1. The Dirac operator is obtained from the

variation of the Randall-Sundrum free fermion action,

SRS(fermion) =

∫
dx

∫ R′

R

dz

(
R

z

)4

Ψ̄

(
iγM∂M − i

2

z
γ5 − c

z

)
Ψ, (A.6.88)

where c = mR and we have integrated the left-acting derivatives by parts. The Dirac op-

erator is a product of the (R/z)4 prefactor coming from the AdS geometry and an operator

D given by

D = iγM∂M − i
2

z
γ5 − c

z
. (A.6.89)

We would like to find the mixed position/momentum space two-point Green’s function

satisfying

(R/z)4D∆(p, z, z′) = iδ(z − z′). (A.6.90)

Following (A.6.73) we define a pseudo-conjugate Dirac operator

D̄ = iγM∂M − i
2

z
γ5 +

c

z
(A.6.91)

and ‘square’ D into a diagonal second-order operator,

DD̄ =

DD̄ − 0

0 DD̄ +

 DD̄ ± = ∂2 − ∂2
5 +

4

z
∂5 +

c2 ± c− 6

z2
. (A.6.92)

Next we follow (A.6.75) and solve for the Green’s function of this squared operator in

mixed position/momentum space where ∂2 → −p2,

− (R/z)4DD̄F (p, z, z′) = −
(
R

z

)4

DD̄ −
DD̄ +


F−

F+

 = iδ(z − z′).

(A.6.93)
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The solution to the Dirac Green’s function equation (A.6.90) is then given by ∆(p, z, z′) =

D̄F (p, z, z′). We shall separate F (p, z, z′) into solutions for the cases z > z′ and z < z′

following (A.6.77). The general solution to the homogeneous equation (A.6.93) with z 6= z′

is

F<,>
± (p, z, z′) = A<,>± z

5
2Jc± 1

2
(pz) +B<,>

± z
5
2Yc± 1

2
(pz), (A.6.94)

where Jn and Yn are Bessel functions of the first and second kinds, A<,>± and B<,>
± are

coefficients to be determined by boundary conditions, and p is the analog of χp defined

by p =
√
pµpµ. Note that this differs from (A.6.79) since there is no explicit bulk mass

dependence. In (A.6.94) the bulk masses enter only in the order of the Bessel functions as

(c± 1
2
).

The matching boundary conditions at z = z′ are given by (A.6.80) and (A.6.81) modi-

fied by a factor of (R/z′)4 from (A.6.93),

∂5F
>
± (z′)− ∂5F

<
± (z′) = i(R/z′)−4, (A.6.95)

F>
± (z′)− F<

± (z′) = 0. (A.6.96)

The chiral boundary conditions are the same as in the flat case, (A.6.82) and (A.6.83) with

the appropriate insertion of (A.6.91).

We may now solve for the A and B coefficients. It is useful to write these in terms of

common factors that appear in their expressions. To this end, let us define the prefactors

αL =
iπ

2R4

1

S−c (pR, pR′)
αR =

iπ

2R4

1

S+
c (pR, pR′)

(A.6.97)

and a set of antisymmetric functions

S±c (x, y) = Jc± 1
2
(x)Yc± 1

2
(y)− Jc± 1

2
(y)Yc± 1

2
(x) (A.6.98)

S̃±c (x, y) = Jc± 1
2
(x)Yc∓ 1

2
(y)− Jc∓ 1

2
(y)Yc± 1

2
(x) (A.6.99)
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AL<+ = −αLz′
5
2Yc− 1

2
(pR) S̃+

c (pz′, pR′) AR<+ = −αRz′
5
2Yc+ 1

2
(pR)S+

c (pz′, pR′)

BL<
+ = αLz

′ 5
2Jc− 1

2
(pR) S̃+

c (pz′, pR′) BR<
+ = αRz

′ 5
2Jc+ 1

2
(pR)S+

c (pz′, pR′)

AL<− = −αLz′
5
2Yc− 1

2
(pR)S−c (pz′, pR′) AR<− = −αRz′

5
2Yc+ 1

2
(pR) S̃−c (pz′, pR′)

BL<
− = αLz

′ 5
2Jc− 1

2
(pR)S−c (pz′, pR′) BR<

− = αRz
′ 5
2Jc+ 1

2
(pR) S̃−c (pz′, pR′)

Table A.2: Left-handed RS fermion propagator coefficients: the z > z′ coefficients are ob-
tained by swapping R↔ R′ in the arguments of the functions, leaving the αL,R constant.

With these definitions the coefficients for the left- and right-handed F functions are given

in Table A.2. The FL,R
± functions may thus be written out succinctly for z ≤ z′ as

FL<
+ = αL (zz′)

5/2
S̃+
c (pz′, pR′) S̃−c (pR, pz) (A.6.100)

FL<
− = αL (zz′)

5/2
S−c (pz′, pR′)S−c (pR, pz) (A.6.101)

FR<
+ = αR (zz′)

5/2
S+
c (pz′, pR′)S+

c (pR, pz) (A.6.102)

FR<
− = αR (zz′)

5/2
S̃−c (pz′, pR′) S̃+

c (pR, pz) (A.6.103)

The expressions for z > z′ are obtained by making the replacement {R ↔ R′} in the

arguments of the Sc functions. We now use the notation in (A.6.77) and drop the <,>

superscripts. From these the fermion Green’s function can be obtained trivially from the

analog of (A.6.76),

∆(p, z, z′) ≡ D̄F (p, z, z′) =

 D−F− σµpµF+

σ̄µpµF− D+F+

 , D± ≡ ±
(
∂5 − 2

z

)
+ c

z
.(A.6.104)

Note that in the UV limit (χp � 1/R) the Bessel functions reduce to phase-shifted trigono-

metric functions so that we indeed recover the flat 5D propagators.
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A.6.3 Euclidean warped 5D fermion propagator

Finally, it is convenient to write the Wick-rotated form of the fermion propagators since

these will provide the relevant Feynman rules in loop diagrams such as µ→ eγ. We shall

write out the scalar F functions in a convenient form that we use throughout the rest of

this document. The derivation is identical to that outlined above with the replacement

p2 = −p2
E (i.e. ∂ = i∂E) in the Green’s function equation so that we shall simply state

the results. The Euclidean scalar functions are written in terms of the modified Bessel

functions I and K which behave like exponentials in the UV. Let us define the auxiliary

functions

Sc(x±, x
′
±) = Ic±1/2(x)Kc±1/2(x′)− Ic±1/2(x′)Kc±1/2(x) (A.6.105)

Sc(x±, x
′
∓) = Ic±1/2(x)Kc∓1/2(x′)− Ic∓1/2(x′)Kc±1/2(x) (A.6.106)

Tc(x±, x
′
∓) = Ic±1/2(x)Kc∓1/2(x′) + Ic∓1/2(x′)Kc±1/2(x). (A.6.107)

Since we would like to write dimensionless loop integrals, let us define the dimensionless

variables y ≡ kER
′ and x = kEz, which are the natural quantities which appear as argu-

ments of the Bessel functions. We write the warp factor as w = (R/R′). It is convenient to

pull out overall factors to write the F functions as

F±(kE, z, z
′) = iw−4R′F̃ xx′

±,y . (A.6.108)

The Euclidean scalar functions for x > x′ (i.e. z > z′) are given by

F̃L
− =

(xx′)5/2

y5

ScL(x−, y−)ScL(x′−, wy−)

ScL(y−, wy−)
, F̃L

+ = −(xx′)5/2

y5

TcL(x+, y−)TcL(x′+, wy−)

ScL(y−, wy−)
,

(A.6.109)

F̃R
− = −(xx′)5/2

y5

TcR(x−, y+)TcR(x′−, wy+)

ScR(y+, wy+)
, F̃R

+ =
(xx′)5/2

y5

ScR(x+, y+)ScR(x′+, wy+)

ScR(y+, wy+)
.

(A.6.110)
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The functions for x < x′ are given by replacing x ↔ x′ in the above formulas. With these

definitions the Euclidean fermion propagator given by the analog of (A.6.104),

∆(kE, x, x
′) ≡ iR

′

w4 D̄F̃ xx′
y =

yD̃+F̃− σ
µyµF̃+

σ̄µyµF̃− yD̃−F̃+

 , D̃± ≡ ±
(
∂x − 2

x

)
+ c

x
.

(A.6.111)

A.7 Finiteness of the brane-localized neutral Higgs diagram

As explained in Section 2.6.4, the finiteness of the one-loop result and logarithmic diver-

gence at two-loop order becomes opaque to naı̈ve 5D power counting arguments when

the Higgs is brane-localized. Additional cancellations of leading-order terms in loop mo-

mentum are required to sensibly interpolate between the superficial degree of divergence

of the bulk and brane-localized scenarios. For the charged Higgs this cancellation mech-

anism came from an M2
W insertion, which led to an additional 1/k2 factor relative to

the bulk field. Here we shall elucidate the finiteness of the single-mass-insertion brane-

localized neutral scalar loop.

At one-loop order this finiteness can be seen explicitly by the cancellation between

the neutral Higgs and the neutral Goldstone. However, there is an additional chiral can-

cellation that occurs between the two diagrams associated a single intermediate neutral

boson. Indeed, because the Higgs and neutral Goldstone do not appear to completely

cancel at two-loop order, this additional cancellation is necessary for the power-counting

arguments given in Section 2.6.7.

We highlight this cancellation in two ways. The pure momentum space calcu-

lation highlights the role of the chiral boundary conditions, while the mixed posi-
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tion/momentum space calculation shows an explicit cancellation while including the full

scalar structure the amplitude.

A.7.1 Momentum space

Here we shall see that 4D Lorentz invariance combined with the chiral boundary condi-

tions forces the UV divergence of the two diagrams in Fig. 2.7 to cancel.

We first note that the propagators to the photon vertex each have an endpoint in the

bulk. This implies that the leading-order contributions to these propagators in the UV

limit are proportional to the uncompactified flat-space 5D propagators,

∆ =

∆ψχ ∆ψψ

∆χχ ∆χψ

 ∼ 1

k2 − k2
5

 ik5 kµσ
µ

kµσ̄
µ −ik5

 =
kµγ

µ + k5γ
5

k2 − k2
5

, (A.7.112)

where we have written ∆ψχ to mean the propagation of a left-handed Weyl spinor χ into

a right-handed spinor ψ. The terms along the diagonal come from k5γ
5 and represent

the chirality-flipping part of the propagator. The boundary conditions require the wrong-

chirality modes, the SU(2) doublet ψL and SU(2) singlet χR, to vanish on the IR brane.

Thus, the fermion may propagate to the wrong-chirality spinor in the bulk only if it prop-

agates back to the correct-chirality spinor when it returns to the brane. For an internal

left-handed Weyl fermion χL, the portion of the amplitude coming from the photon emis-

sion takes the form

∆χχσ
µ∆χχ + ∆χψσ̄

µ∆ψχ ∼ (kασ̄
α)σµ

(
kβσ̄

β
)

+ (k5)2σ̄µ. (A.7.113)

Combining with the analogous expression for a right-handed Weyl fermion in the loop,
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the relevant part of the photon emission amplitude can be written as

/kγµ/k + (k5)2γµ

(k2 − k2
5)2

, (A.7.114)

where these terms correspond to a fermion of the correct and incorrect chirality propa-

gating into the brane. The second term can be simplified using∫
dk5

(k5)2

(k2 − k2
5)2

=

∫
dk5

−k2

(k2 − k2
5)2

, (A.7.115)

which can be confirmed by Wick rotating both sides, k2 → −k2
E , and performing the dk5

integral explicitly. Now it is easy to see that the divergent contributions from the diagrams

in Fig. 2.7 cancel. The boundary conditions force brane-to-brane propagators to go like /k

with no γ5 part. Thus we may write the internal fermion structure of the amplitudes as

M(a) +M(b) ∼ /k
(
/kγµ/k − k2γµ

)
+
(
/kγµ/k − k2γµ

)
/k = 0. (A.7.116)

The key minus sign between the two terms in the photon emission comes from the chiral

boundary conditions that force the second term to pick up the relative sign between the

two diagonal blocks of γ5.

Let us remark that it is crucial that the denominator in (A.7.115) contains exactly two

propagators or else the equality would not hold. One might be concerned that the brane-

to-brane propagator should also contribute an additional factor of (k2−k2
5) to the denom-

inator (the k5γ
5 term vanishes in the numerator from boundary conditions). Such a factor

is indeed present in the full calculation, but because 5D Lorentz invariance is broken on

the brane, k5 is not conserved there and this factor actually includes a different, uncorre-

lated fifth momentum component, k̃5, which can be taken the be independent of the dk5

integral. This is a manifestation of the principles in Appendix A.1. As a check, one can

perform the dk̃5 integral for this brane-to-brane propagator and obtain the same /k/|k| UV

behavior found in the careful derivation performed in Appendix A.6.1.
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A.7.2 Position/momentum space

In Appendix A.6.1 we derived the flat-space bulk fermion propagator,

∆(p, x5, x
′
5) =

(
/p− iγ5∂5 +m

) −i cosχp (L− |x5 − x′5|) + γ5℘(X) cosχp (L− (x5 + x′5))

2χp sinχpL
,

(A.7.117)

where the zero mode chirality is given by X = {L,R} with ℘(L) = +1 and ℘(R) = −1.

We then argued at the end of Appendix A.6.2 that the propagators in a warped extra

dimension reduce to this case up to overall phases. Thus we expect the amplitudes to

have the same UV behavior up to finite factors. The relevant flat-space one-loop diagrams

contributing to the operator (2.4.27) are shown in Fig. 2.7. We start with Fig. 2.7a and

assume that the decay is from µL to eR. The loop propagators with (x5, x
′
5) = (L, z), (z, L)

and (L,L) can be written as

∆(k′, L, z) = −i
/k′ cosχk′z − iγ5χk′ sinχk′z

χk′ sinχk′L
PR (A.7.118)

∆(k, z, L) = −i /k cosχkz + iγ5χk sinχkz

χk sinχkL
PR (A.7.119)

∆(k, L, L) = −i /k cosχkL

χk sinχkL
PR, (A.7.120)

where k′ = k + q. We have used the chiral boundary conditions to simplify ∆(k, L, L).

Since we are interested in the UV behavior we have dropped the terms proportional to

the bulk mass m from the internal propagators because these are finite. Combining the

propagators together and doing the same calculation for Fig. 2.7b, the amplitudes become

Mµ
(a) =

∫
d4k

(2π)4
dz ū(p′)

{
/k′ γµ /k f(k,z)+χkχk′ γ

µ g(k,z)

χkχk′ [(p+k)2−m2
H ]

}
/k cotχkL

χk
u(p) (A.7.121)

Mµ
(b) =

∫
d4k

(2π)4
dz ū(p′)

/k′ cotχk′L
χk′

{
/k′ γµ /k f(k,z)+χkχk′ γ

µ g(k,z)

χkχk′ [(p+k)2−m2
H ]

}
u(p) (A.7.122)

302



where we have written

f(k, z) = −cos(χk+qz) cos(χkz)

sinχk+qL sinχkL
(A.7.123)

g(k, z) = −sin(χk+qz) sin(χkz)

sinχk+qL sinχkL
. (A.7.124)

Note that all of the z dependence is manifestly contained in sines and cosines. Further

we have neglected the flavor-dependence of the χk factors since these also come from the

bulk masses via (A.6.79) and are negligible in the UV.

Upon Wick rotation the trigonometric functions become hyperbolic functions which

are exponentials in the Euclidean momentum,

cosχkz → cosh(χkEz) =
1

2

(
eχkE z + e−χkE z

)
(A.7.125)

sinχkz → i sinh(χkEz) =
i

2

(
eχkE z − e−χkE z

)
. (A.7.126)

We may now replace the trigonometric functions with the appropriate Euclidean expo-

nentials. Since we are concerned with the UV behavior, we may drop terms which are

exponentially suppressed for large k over the entire range of z. The remaining terms are

simple exponentials and can be integrated over the interval. One finds that the trigono-

metric terms in (A.7.121) and (A.7.122) yield the expression

i

χkE+q + χkE
→ −1

χk+q + χk
, (A.7.127)

where on the right we have reversed our Wick rotation to obtain a Minkowski space ex-

pression for the terms which are not exponentially suppressed in Euclidean momentum.

After doing this, the leading order term in cotχL in (A.7.121) and (A.7.122) equals i−1 and

the terms in the braces become{
(/k + /q) γµ /k − χk+qχk γ

µ

χkχk+q (χk + χk+q) [(p+ k)2 −m2
H ]

}
, (A.7.128)

which gives the numerator of (A.7.116).
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In terms of these quantities the potentially divergent amplitudes can be written as

Mµ
(a) =

∫
d4k

(2π)4
1

(χk+q+χk)[(p+k)2−m2
H ]
ū(p)

{
(/k+/q)

χk+q
γµ − γµ /k

χk

}
u(p+ q), (A.7.129)

Mµ
(b) =

∫
d4k

(2π)4
1

(χk+q+χk)[(p+k)2−m2
H ]
ū(p)

{
γµ /k

χk
− (/k+/q)

χk+q
γµ
}
u(p+ q), (A.7.130)

therefore these two terms cancel each other in the UV and the operator (2.4.27) is finite.

Higher mass insertions do not spoil this cancellation since these are associated with

internal brane-to-brane propagators whose UV limit goes like ∆(k) ∼ /k/χk. The chi-

ral structure of the effective operator (2.4.27) requires that only diagrams with an odd

number of mass insertions contribute. Using the UV limit ∆(k)2 → 1 one notes that the

divergence structure reduces to the case above.
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APPENDIX B

DETAILS FOR B → Sγ CALCULATION
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B.1 Dimensionless Integrals for Leading Diagrams

This appendix defines the dimensionless integrals associated with the leading contribu-

tions to the a and b terms of the dipole Wilson coefficients C7,8 in Section 3.3. Details of

the derivation of these integrals are found in the appendix of [156]. In the mass insertion

approximation the Standard Model contribution appears as an infrared pole, which we

subtract.

B.1.1 Propagator functions

We use dimensionless integration variables x ≡ kEz ∈ [wy, y] and y ≡ kER
′ ∈ [0,∞],

where kE is the Euclidean loop momentum and w = (R/R′) is the warp factor. The

integrals are expressed with respect to the functions that appear in the mixed position–

Euclidean momentum space fermion propagator,

∆(kE, x, x
′) ≡ i

R′

w4
D̄F̃ xx′

y =

yD̃−F̃− σµyµF̃+

σ̄µyµF̃− yD̃+F̃+

 , D̃± ≡ ±
(
∂x −

2

x

)
+
c

x
. (B.1.1)

where the F̃ functions are defined for x > x′ (i.e. z > z′) by

F̃L
− =

(xx′)5/2

y5

ScL(x−, y−)ScL(x′−, wy−)

ScL(y−, wy−)
F̃L

+ = −(xx′)5/2

y5

TcL(x+, y−)TcL(x′+, wy−)

ScL(y−, wy−)

(B.1.2)

F̃R
− = −(xx′)5/2

y5

TcR(x−, y+)TcR(x′−, wy+)

ScR(y+, wy+)
F̃R

+ =
(xx′)5/2

y5

ScR(x+, y+)ScR(x′+, wy+)

ScR(y+, wy+)
.

(B.1.3)
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The analogous functions for x < x′ are given by replacing x ↔ x′ in the above formulas.

S and T function are products of Bessel functions,

Sc(x±, x
′
±) = Ic±1/2(x)Kc±1/2(x′)− Ic±1/2(x′)Kc±1/2(x) (B.1.4)

Sc(x±, x
′
∓) = Ic±1/2(x)Kc∓1/2(x′)− Ic∓1/2(x′)Kc±1/2(x) (B.1.5)

Tc(x±, x
′
∓) = Ic±1/2(x)Kc∓1/2(x′) + Ic∓1/2(x′)Kc±1/2(x). (B.1.6)

Similarly, the mixed position–Euclidean momentum space vector propagators are−iηµνG

and iḠ for the 4-vector and scalar parts respectively. For x < x′, the G functions are,

Gk(z, z
′) =

(R′)2

R
Gy(x, x

′) =
(R′)2

R

xx′

y

T10(x, y)T10(x′, wy)

S00(wy, y)
, (B.1.7)

G5k(z, z
′) =

(R′)2

R
Ḡy(x, x

′) =
(R′)2

R

xx′

y

S00(x, y)S00(x′, wy)

S00(wy, y)
, (B.1.8)

where

Tij(x, y) = Ii(x)Kj(y) + Ij(y)Ki(x) (B.1.9)

Sij(x, y) = Ii(x)Kj(y)− Ij(y)Ki(x). (B.1.10)

For z < z′ the above formula is modified by x↔ x′.

B.1.2 C7 integrals

We label vertices such that the external fermion legs attach to vertices 1 and 3, and the

photon or gluon is emitted at vertex 2. Propagators attached to the brane x = y signify

Yukawa couplings or mass insertions, which may change the fermion flavor as labeled by

its bulk mass, c. We have left this c dependence implicit in the following expressions.
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IC7a =

∫
dy dx y2

(y
x

)4 [
− 2F̃Lyx

+,y F̃
Lxy
+,y F̃

Ryy
−,y

y2

y2 + (MWR′)2

+ F̃Lyx
+,y F̃

Lxy
+,y F̃

Ryy
−,y

y4

(y2 + (MWR′)2)2
− 1

2

(
y ∂kE F̃

Lyx
+,y

)
F̃Lxy

+,y F̃
Ryy
−,y

y2

y2 + (MWR′)2

− 1

2

(
y ∂kED̃−F̃

Lyx
−,y

)
D̃+F̃

Lxy
+,y F̃

Ryy
−,y

1

y2 + (MWR′)2
+ 2F̃Lyy

+,y D̃+F̃
Ryx
+,y D̃−F̃

Rxy
−,y

1

y2 + (MWR′)2

− F̃Lyy
+,y D̃+F̃

Ryx
+,y D̃−F̃

Rxy
−,y

y2

(y2 + (MWR′)2)2
+

1

2

(
y ∂kE F̃

Lyy
+,y

)
D̃+F̃

Ryx
+,y D̃−F̃

Rxy
−,y

1

y2 + (MWR′)2

+ F̃Lyy
+,y F̃

Ryx
−,y F̃

Rxy
−,y

y2

y2 + (MWR′)2
+

1

2

(
y ∂kE F̃

Lyy
+,y

)
F̃Ryx
−,y F̃

Rxy
−,y

y2

y2 + (MWR′)2

+
1

2
F̃Lyy

+,y

(
y ∂kE F̃

Ryy
−,y

)
F̃Rxy
−,y

y2

y2 + (MWR′)2

+
1

2
F̃Lyy

+,y

(
y ∂kED̃+F̃

Ryx
+,y

)
D̃−F̃

Rxy
−,y

1

y2 + (MWR′)2

]
. (B.1.11)

The C7b integral is the sum of two parts corresponding to diagrams with an internal gluon

(G) or scalar gluon (G5) in the loop,

IC7b
= I

(G)
C7b

+ I
(G5)
C7b

. (B.1.12)

Each of these terms include diagrams with a single mass insertion, either on the incoming,

internal, or outgoing fermion line.

IC7b
=

∫
dy dx1 dx2 dx3 y

(
y

x2

)4

∂kEG
31

{1

2

(
y

x1

)2+cL
(
y

x3

)4

D̃+F̃
L(x3mbR

′/y)(mbR
′)

+,(mbR′)

(
D̃−F̃

L12
−,y F̃

L23
−,y + F̃L12

+,y D̃−F̃
L23
−,y

)
+

1

2

(
y

x1

)4(
y

x3

)2−cR
D̃+F̃

R(mbR
′)(x1mbR

′/y)
+,(mbR′)

(
D̃−F̃

R12
−,y F̃

R23
−,y + F̃R12

+,y D̃−F̃
R23
−,y

)
+

(
y

x1

)2+cL
(
y

x3

)2−cR (
− D̃+F̃

R32
+,y D̃−F̃

R2y
−,y F̃

Ly1
+,y + y2 F̃R32

−,y F̃
R2y
−,y F̃

Ly1
+,y

− D̃−F̃Ly2
−,y D̃+F̃

L21
+,y F̃

R3y
−,y + y2 F̃R3y

−,y F̃
Ly2
+,y F̃

L21
+,y

)}
(B.1.13)
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I ′C7b
=

∫
dy dx1 dx2 dx3

1

2

(
y

x2

)4

{( y

x1

)2+cL
(
y

x3

)4

D̃+F̃
L(x3mbR

′/y)(mbR
′)

+,(mbR′)
×(

F̃L12
−,y D̃+F̃

L23
+,y (y ∂kEG

31
5 + 4G31

5 ) + y G31
5 (D̃+F̃

L23
+,y ∂kE F̃

L12
−,y − F̃L23

+,y ∂kED̃+F̃
L12
+,y )

)
+

(
y

x1

)4(
y

x3

)2−cR
D̃+F̃

R(mbR
′)(x1mbR

′/y)
+,(mbR′)

×(
F̃R12
−,y D̃+F̃

R23
+,y (y ∂kEG

31
5 + 4G31

5 ) + y G31
5 (D̃+F̃

R23
+,y ∂kE F̃

R12
−,y − F̃R23

+,y ∂kED̃+F̃
R12
+,y )

)
+

(
y

x1

)2+cL
(
y

x3

)2−cR
×(

D̃+F̃
L12
+,y (4 + y ∂kE)(F̃L2y

+,y D̃+F̃
Ry3
+,y G

13
5 )− y F̃L12

−,y ∂kE (D̃+F̃
L2y
+,y D̃+F̃

Ry3
+,y )G13

5

+ D̃+F̃
L1y
+,y D̃+F̃

Ry2
+,y (4 + y ∂kE)(F̃R23

+,y G
13
5 ) − y D̃+F̃

L1y
+,y F̃

Ry2
−,y G

13
5 ∂kE D̃+F̃

R23
+,y

)}
(B.1.14)

B.1.3 C8 integrals

The C8a integral contains a piece identical to the C7a integral associated with the charged

Higgs loop as well as gluon loop diagrams with three mass insertions,

IC8a = I
(1)
C8a

+ 2I
(2)
C8a

+ I
(3)
C8a
. (B.1.15)

The gluon loops are labeled by the number of internal mass insertions, so that I(1)
C8a

is

associated with the diagram with an external mass insertion on each leg, and the factor
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of two on I(2)
C8a

accounts for the two possible placements of the external mass insertion1.

I
(1)
C8a

=

∫
dy dx1dx2dx3

(
y

x1

)4(
y

x2

)(
y

x3

)4

×

D̃+F̃
Ry1
+,ys D̃−F̃

R10
−,y D̃−F̃

Ly3
−,y D̃+F̃

L3y
+,yb

{
− 5

2
y∂kE

(
G12
y G23

y

)
+ 10G12

y G23
y

}
, (B.1.16)

I
(2)
C8a

=

∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)(
y

x3

)4

y3×

F̃L1y
+,y F̃

Ryy
−,y D̃−F̃

Ly3
−,y D̃+F̃

L(x3mbR
′/y)(mbR

′)
+,(mbR′)

∂kE(G12
y G23

y ) (B.1.17)

I
(3)
C8a

=

∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)(
y

x3

)2−cR
y2×

F̃L1y
+,y F̃

Ry3
−,y F̃

Lyy
+,y F̃

Ryy
−,y

{
− 5

2
y ∂kE

(
G12
y G23

y

)
+ 10G12

y G
23
y

}
. (B.1.18)

For C8b, the only dominant diagram is the gluon loop with an internal mass insertion.

All other analogous diagrams (e.g. mass insertion on an external leg, or loops with G5)

contain no zero modes and hence give negligible contributions after alignment.

IC8b
=

∫
dy dx1dx2dx3

(
y

x1

)2+cL
(
y

x2

)(
y

x3

)2−cR
y2×

F̃L1y
+,y F̃

Ry3
−,y

{
− 5

2
y ∂kE

(
G12
y G23

y

)
+ 10G12

y G23
y

}
. (B.1.19)

B.2 Estimating the size of the misalignment contribution

In this appendix we clarify a subtlety in the size of the anarchic contributions (∆C(′)
7,8a) ver-

sus the misalignment contributions (∆C(′)
7,8b) to the Wilson coefficients, as defined in Sec-

tion 3.3.2. For the anarchic contributions the relative sizes of the right-to-left (unprimed)

coefficients to the left-to-right (primed) coefficients are given by the relative size of the fbL

and fbR wavefunctions on the IR brane. On the other hand, the misalignment contribu-

tions for the two chiral transitions do not follow this pattern and are, in fact, of the same

1 These integrands differ by L↔ R, but the integrals are approximately the same.
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order of magnitude. We show here that this apparent inconsistency can be understood by

accounting for cancelations coming from the rotation to the SM fermion mass basis.

For simplicity, consider the 2× 2 matrix of misalignment diagrams qRj → qLi where we

only consider the second and third generations. This transition is given by the bij term in

(3.3.13), which we may parameterize as

(misalignment term)ij ∼

(b− c− d) y11 (b− c+ d) y12

(b+ c− d) y21 (b+ c+ d) y22

 . (B.2.20)

Here we have written b as an average scale for the bij matrix, and yij = fQiY
†
d ijfDj . The

c ∼ 10−1 and d ∼ 10−2 terms represent deviations from the average. In particular, the c

deviations account for the effect of an internal bL (whose zero mode profile is very differ-

ent from that of the light quarks) while the d deviations account for the smaller effect of

an internal bR.

In order to pass to the physical basis, one must apply to this matrix the same rotation

that diagonalizes the SM mass matrix, which is proportional to y. The off-diagonal terms

of the rotated misalignment matrix give the C7 and C ′7 coefficients (the argument for C8 is

identical), 1 δ

δ′ 1

 (misalignment term)

 1 γ

γ′ 1

 ∼
 C7b

C ′†7b

 . (B.2.21)

The parameters δ and γ are ratios of the left- and right-handed zero mode wavefunctions

on the brane; the primed and unprimed parameters are related by a minus sign.

We focus on order of magnitude estimates, so we introduce a numerical parameter

ε ∼ 10−1. Normalizing the Yukawa to y22 = 1, our parameters are approximately

c ∼ ε d ∼ ε2 y11 ∼ ε3 y12 ∼ ε2 y21 ∼ ε δ(′) ∼ ε2 γ(′) ∼ ε. (B.2.22)
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Note that ε is merely a fiducial quantity, not an expansion parameter of the model. We

now apply the rotation (B.2.21) and study the order of magnitude of the off-diagonal

terms. By construction the terms proportional to b are completely diagonalized. We con-

sider the terms proportional to c (fbL) and d (fbR) separately.

B.2.1 Misalignment from fbL

First consider the terms proportional to c, which are split by the relative size of fbL versus

fsL from internal zero mode propagators. The part of the C ′†7b term proportional to c goes

like

C ′†7b

∣∣∣
c
∼ (y21 + γ′ y22)− δ′ (γ′ y12 + y11) . (B.2.23)

Naively the first term is of O(ε) and appears to dominate the expression. This, however,

does not account for relations coming from alignment. Observe that the minus sign here

comes from the choice of parameterization in (B.2.20). Further, observe that changing the

relative sign in (B.2.23) is equivalent to changing the sign of c in the top row of (B.2.20).

In this case, however, the c matrix would be completely aligned with the SM mass ma-

trix and the off diagonal term (B.2.23) would vanish. Thus the first and second terms in

(B.2.23) must be of the same order of magnitude in order for them to cancel when the

relative sign is swapped—in other words, (y21 + γ′ y22) ∼ ε5 in order to match the naive

order of magnitude of the second term. We thus have

c C ′7b|c ∼ ε6. (B.2.24)

This observation reflects the key cancelation that causes the relative size of the primed and

unprimed misalignment terms to differ from that of the anarchic terms of the amplitude.
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The contribution to the C7b term proportional to c is

C7b|c ∼ δ (γ y21 + y22)− (γ y11 + y12) . (B.2.25)

Unlike C ′7b, both terms in the above expression are dominated by their O(ε2) components

and we find

c C7b|c ∼ ε ε2 = ε3, (B.2.26)

as expected from a naive estimate.

B.2.2 Misalignment from fbR

We perform the same analysis on the terms proportional to d, which implicitly encode the

split between terms that carry factors of fbR versus fsR from internal propagators. For C7b

we have

C7b|d ∼ (y12 + δy22)− γ (y11 + δ y21) . (B.2.27)

Following the argument that the terms should cancel when the sign is swapped and using

this to estimate the size of each bracketed term, one finds d C7b|d ∼ ε6, so that the net

contribution of the d term is subdominant to (B.2.26).

On the other hand, the fbR misalignment in the C ′7b term cannot be neglected,

C ′7b|d ∼ γ′ (δ′ y12 + y22)− (δ′ y11 + y21) . (B.2.28)

Here both terms are O(ε) so that the total contribution is

d C ′†7b

∣∣∣
d
∼ ε3, (B.2.29)

which dominates over the term proportional to c in (B.2.24).
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B.2.3 Size of misalignment coefficients

Thus the final order of magnitude estimate for the C7b and C ′7b coefficients are

C7b ∼ c C7b|c ∼ ε3 (B.2.30)

C ′7b ∼ d C ′†7b

∣∣∣
d
∼ ε3, (B.2.31)

so that unlike the anarchic contribution, the right-to-left (unprimed) and left-to-right

(primed) Wilson coefficients are of the same order of magnitude.

B.3 Comments on 5D dipole theory uncertainties

Finite 5D loop effects carry subtleties associated with cutoffs and UV sensitivity2. While

the one loop contribution discussed in this paper is manifestly finite, higher loops are po-

tentially divergent and require explicit calculations. Here we focus on the sensitivity of

the finite loop-level result to UV physics at, for example, the strong coupling scale where

the 5D theory is expected to break down. In [20] it was pointed out that the naive di-

mensional analysis (NDA) for a brane and a bulk Higgs differ due to the dimension of

the Yukawa coupling—the NDA two-loop contribution for the former gives an O(1) cor-

rection relative to the one loop result, whereas this is not expected for the latter. In this

appendix we comment on subtleties coming from 5D Lorentz invariance that may plausi-

bly avoid this ‘worst case’ NDA estimate. Indeed, the NDA for the one-loop contribution

to these dipole operators is logarithmically divergent; one may understand the correct

one-loop finiteness as coming from 5D Lorentz symmetry.

These comments are meant to demonstrate non-trivial points in these calculations that

2We thank K. Agashe, J. Hubisz, and G. Perez for discussions on these subtleties.
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require particular care when drawing conclusions about UV sensitivity in these processes;

a more careful investigation with explicit calculations of these effects is beyond the scope

of this work.

Note that the general features of the phenomenological picture presented in Section 3.6

are unchanged even if there are O(1) corrections to the Wilson coefficients.

B.3.1 KK decomposition

5D Lorentz invariance imposes that in the KK reduced theory, the 4D loop momentum

cutoff should be matched to the number of KK modes in the effective theory. This was

mentioned in [156] to motivate a manifestly 5D calculation by pointing out that naively

taking the finite 4D loop cutoff to infinity drops terms of the form (nMKK/Λ)2, where

nMKK is approximately the mass of the nth KK mode. Indeed, from the 4D perspective this

may appear to suggest a non-decoupling effect where the dominant contribution comes

from heavy KK states so that the calculation seems to be sensitive to UV physics.

However, as demonstrated in Fig. B.1, imposing 5D Lorentz invariance requires that

each KK mode carries a different 4D momentum cutoff. In particular, the nth KK mode

carries a smaller 4D cutoff Λn than that of the first KK mode, Λ1 since the momentum

integral must fall within the circle of radius Λ, the 5D momentum space cutoff. Thus

in 4D the high KK modes are not sensitive to the same cutoff as lower KK modes. This

gives a sense in which 4D decoupling can manifest itself while preserving 5D Lorentz

invariance. In this sense it is difficult to use this matching to diagnose UV sensitivity.

As a qualitative and demonstrative estimate, one can use the expression in Section 6.6

of [156] for a neutral Higgs diagram and impose a KK number dependent cutoff for each
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Figure B.1: A sketch of the 5D momentum space where the circle of radius Λ represents
the boundary of a 5D Lorentz invariant loop momentum integration region. Marks on the
kz axis show the masses of KK states. Dashed lines demonstrate that the 4D loop cutoff
which respects 5D Lorentz invariance depends on the particular KK mode.

state in the loop so that 5D Lorentz invariance is imposed as in Fig. B.1. One finds that,

for example, in a sum of 200 KK modes, the highest 20 modes only contribute ∼ 20% to

the total result.

B.3.2 5D cutoff

Another way to diagnose UV sensitivity is to consider the effect of a cutoff in the 5D

picture, for example, by setting a cutoff at Λ = 5 TeV representing the strong coupling

scale at which the 5D theory breaks down. Fig. B.2 shows the dimensionless integral

associated with the charged Higgs loop, where y = R′kE is the dimensionless variable

representing the loop momentum. Observe that the dominant contribution to the effect

does not come from arbitrarily large y but rather in the peak at low values of y. Cutting

off the integral at Λ = 5 TeV (dashed line) gives an error of approximately 15%, which is

comparable to the subleading diagrams that were not included in this analysis.
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y=R’kE

I(y)

Λ = 5 TeV

Figure B.2: Plot of the charged Higgs integrand as a function of the dimensionless loop
momentum in the position/momentum space picture. The dashed line is a heuristic 5D
cutoff Λ representing the strong coupling scale. The shaded region represents the error
from taking the loop momentum to infinity rather than Λ; the contribution of this shaded
region is approximately 15% of the total integral.
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APPENDIX C

USEFUL LEMMA FOR R-SYMMETRY BREAKING
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In this appendix, we will prove the following lemma described above in section 4.

Lemma: Consider a square hermitian matrix M , divided into blocks

M =


M11 M12 M13

M †
12 M22 M23

M †
13 M

†
23 M33

 (C.0.1)

with Mij being mi ×mj . Suppose that M satisfies:

(Mk)13 = 0 for all k = 1, 2, . . . (C.0.2)

Then there exists a block unitary transformation M → UMU † with

U =


U1

U2

U3

 (C.0.3)

such that M takes the block-diagonal form

M =

 M̃11 0

0 M̃22

 (C.0.4)

with the 12 block that is zero in eq. (C.0.4) containing the 13 block in the original basis.

Proof: We will prove this by induction, by starting with general m1, m2, m3 and then

reducing this to the same claim but with smaller mi. The k = 1 version of eq. (C.0.2)

implies that M13 = 0. The k = 2 condition implies that M12M23 = 0. Combining this with
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a choice of U1, U2 and U3, we can always simultaneously block-diagonalize M12 and M23:

M12 =

 (A)m′1×m′1 0 0

0 0 0

 M23 =


0 0

0 0

0 (B)m′3×m′3

 (C.0.5)

with A and B nonsingular, and m′1 ≤ m1,m2, m′3 ≤ m2,m3, and m′1 + m′3 ≤ m2. Dividing

M22 into 3× 3 blocks like eq. (C.0.1) with mi → m′i, the k ≥ 3 versions of eq. (C.0.2) imply

((M22)`)1′3′ = 0 for all ` = 1, 2, . . . (C.0.6)

So we see that eq. (C.0.2) maps on to an identical condition for the smaller matrix M22.

Moreover, examining the form of eq. (C.0.1), after substituting eq. (C.0.5), we find:

M =



M11

A 0 0

0 0 0

 0


A† 0

0 0

0 0

 M22


0 0

0 0

0 B


0

 0 0 0

0 0 B†

 M33



(C.0.7)

So we see that the desired 2× 2 block form eq. (C.0.4) can be achieved, provided M22 can

be put into an analogous 2× 2 block form, also with a block-unitary transformation. This

completes the inductive recursion. Proceeding in this way, we can reduce the lemma to a

trivial statement about 3× 3 matrices, which completes the proof by induction.
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APPENDIX D

DERIVATION OF THE AVERAGE DARK MATTER VELOCITY IN A DWARF

GALAXY
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In this appendix, we discuss the derivation of the average dark matter velocity in the

Draco dwarf galaxy. We assume the radial distribution of dark matter in Draco to follow

a Navarro-Frenk-White (NFW) profile [312],

ρ(r) = ρs
rs
r

r2
s

(r + rs)2
, (D.0.1)

with scale radius rs = 2.09 kpc and scale density ρs = 0.98 GeV/cm3 [11].

We then use the Eddington formula [91]

f(r, v) =
1√
8π2

d

dE

∫ E
0

dρ

dΨ

dΨ√
E −Ψ

(D.0.2)

=
1√
8π2

∫ E
0

dΨ
1√
E −Ψ

d2ρ

dΨ2
+

1√
E
dρ

dΨ

∣∣∣∣
Ψ=0

(D.0.3)

to translate ρ(r) into the velocity distribution f(r, v) at radius r. Here, Ψ(r) =

−G
∫∞
R
drM(r)/r2 is (minus) the gravitational potential at radius r, which is determined

by the enclosed mass M(r) =
∫ r

0
dr 4πr2 ρ(r), and E(r, v) = Ψ(r)− 1

2
v2 is (minus) the dark

matter energy per unit mass. The dark matter density ρ is treated as a function of Ψ rather

than r here, which is well-defined if Ψ(r) is a monotonic function of r; the NFW profile

has this property. The resulting velocity distribution f(r, v) satisfies the normalization

condition

ρ(r) = 4π

∫
dv v2f(r, v) . (D.0.4)

The annihilation rate of dark matter is proportional to ρ2σv, thus to obtain eVv2, the

average dark matter velocity in the Draco dwarf galaxy quoted in Section 8.5, we compute

eVv2 =
1

N

∫ ∞
0

dr 4πr2ρ2(r)

∫ 1

0

dv 4πv4f(r, v) (D.0.5)

with the normalization constant N =
∫∞

0
dr 4πr2ρ2(r). We find eVv2 ≈ (34.7 km/s)2,

which corresponds to eVv2
rel ≈ (69.3 km/s)2.
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APPENDIX E

SOME REMARKS FOR LEPTOGENESIS WITH COMPOSITE NEUTRINOS
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E.1 Matching the UV theory to the effective theory

In this appendix, we obtain the effective Yukawa and L-violating couplings in eqs. (6.2.1)

and (6.2.5) by integrating out the heavy fields in eqs. (6.3.10)-(6.3.15). This gives the

relations between the effective couplings λ, h and those of the full theory.

We start from rewriting eqs. (6.3.10)-(6.3.15) keeping all the indices explicitly

Y L
giAabmσ

2
mnΩbaα

g Liαn + h.c., (E.1.1)

M̃gH̃
αΦabΩgbaα + h.c., (E.1.2)

Y A
ff ′ψfamσ

2
mnΦabψf ′bn + h.c., (E.1.3)

Y N
k εabopqrε

opqrstεuvwxyzΦabAuvmσ
2
mnNstwxyz,kn + h.c., (E.1.4)

yNikH
αLαiNk + h.c. (E.1.5)

where here the upper indices represent the hermitian conjugate of the fields. As we can

see in eq. (E.1.3), the antisymmetry in the spinor and the SU(6)C indices require Y A
ff ′ to be

antisymmetric. The indices here are quite cumbersome, and we write them only when it

is necessary in the following calculation.

To obtain the effective Yukawa coupling as an (ψAψLH̃) vertex, we need to integrate

out the heavy Ω and Φ fields in Fig. 6.1a. The Ω and Φ related couplings, including their

mass terms and three vertices in the diagram, is

−M2Ω†Ω−M2Φ†Φ + Y AψΦ†ψ + Y L†L†ΩA† + M̃ †Ω†ΦH̃ + h.c.. (E.1.6)

After integrating Ω and Φ out, and using the convention |M̃ | = rM , we obtain

1

M3
[Y L†rY A(L†A†H̃)(ψTψ) + h.c.] (E.1.7)

Writing the indices explicitly, we can rearrange the fields into a more transparent form for
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composite neutrino

Y L†
i rY A

ff ′

M3
(L∗αimσ

2
mnA

∗ab
n H̃α)(ψfasσ

2
stψf ′bt) + h.c. =

Y L†
i rY A

ff ′

M3
(ψfasσ

2
stA
∗ab
m ψf ′bt)σ

2
mnL

∗α
in H̃α + h.c. ≡

λff
′,i

(ψTf A
∗ψf ′)L

†
iH̃

M3
+ h.c., (E.1.8)

where

λff
′,i = Y L†

i rY A
ff ′ ⇒ λ ∼ r|Y L||Y A|. (E.1.9)

Note that the second equality implies that when interchanging ff ′, the antisymmetry of

Aab and Y A
ff ′ makes the whole RH neutrino part invariant. This gives the correct form for

Bff ′ , the massless composite neutrinos.

For the L-violating coupling, eq. (6.2.5), we need to include the heavy Majorana

fermion N . The related couplings in Fig. 6.1b are:

−MNN −M2Φ†Φ + Y N†N †A†ΦA+ Y AψΦ†ψ + h.c.. (E.1.10)

After integrating out N and Φ, we obtain

(Y AY N†)2

4M5
(ψTψA∗)(A†ψTψ) + h.c.. (E.1.11)

Writing this in a form that is best for studying composite neutrinos, we have

(Y A
ff ′Y

N†)(Y A
gg′Y

N†)

4M5
(ψfmσ

2
mnψf ′nA

†
o)σ

2
op(A

∗
pψgsσ

2
stψg′t) =

(Y A
ff ′Y

N†)(Y A
gg′Y

N†)

4M5
(ψfmσ

2
mnA

†
oψf ′n)Tσ2

op(ψgsσ
2
stA
∗
pψg′t) ≡

hff
′,gg′

(ψTf A
†ψf ′)(ψ

T
g A
∗ψg′)

M5
, (E.1.12)

where

hff
′,gg′ =

1

4
(Y A

ff ′Y
N†)(Y A

gg′Y
N†) ⇒ h ∼ |Y N |2|Y A|2. (E.1.13)
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E.2 Calculation of µ→ eγ

In this appendix, we calculate the bounds onM given by the lepton flavor violating (LFV)

process µ→ eγ. The vertices and the kinematics of the LFV process are shown in Fig. E.1.

Throughout the calculation, we neglect the mass of the out-going electron. We first

evaluate the amplitude of the diagram where the photon coming from the external muon.

This diagram scales as the electron mass and thus vanish in the limit of massless electron.

Explicitly the diagram gives

Mµ→γ = ūeR(−iY ∗L )

∫
d4k

(2π)4

i

k2 −M2

i(6p′ − 6k)

(p′ − k)2
(iYL)

i(6p′ +mµ)

(p′2 −m2
µ)

(−ie 6ε)uµ

= −e|Y L|2ūeR
[∫

d4k

(2π)4

6p′ − 6k
(k2 −M2)(p′ − k)2

] 6p′ +mµ

p′2 −m2
µ

6εuµ. (E.2.14)

Here M , mµ, me are the masses of Ω, µ, e, we use p′ ≡ (p − q), and εµ is the polarization

of the outgoing photon. Integrating out the loop momentum and doing the dimensional

regularization, we get the amplitude as

Mµ→γ =
−ie|Y L|2

32π2
ūeR

(
6p′ 6p

′ +mµ

p′2 −m2
µ

6ε
)(

2

ε
− γ + ln(4π) +

1

2
− lnM2

)
uµ. (E.2.15)

Here γ is the Euler-Mascheroni constant, ε ≡ 4− d and we take d→ 4 for the finite terms.

We use the condition of transverse polarization

εµq
µ = 0, εµp

µ = 0, εµp
′µ = 0. (E.2.16)

Then, we see that the diagram vanishes, that is, Mµ→γ = 0.

The amplitude of the diagram where the external photon is emitted by the electron

can be written as

Me→γ = ūeR(−ie 6ε) i(6p)
(p2)

(−iY ∗L )

∫
d4k

(2π)4

i

k2 −M2

i(6p− 6k)

(p− k)2
(iYL)uµ

= −e|Y L|2ūe 6ε
6p
p2

[∫
d4k

(2π)4

6p− 6k
(k2 −M2)(p− k)2

]
uµ. (E.2.17)
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Figure E.1: In the upper part are the vertices we use in the calculation: (a) −ieγµ (b)
−ie(p+ p′)µ (c) iY L. The lower part are the kinematics we use in the calculation. The case
with the photon going out from e is not shown, since we can obtain the result directly
from the first diagram.

Integrating out the loop momentum and doing the regularization, this gives

Me→γ =
−ie|Y L|2

32π2
ūeR 6ε

( 6p
m2
µ

6p
)[

2

ε
− γ + ln(4π) +

1

2
− lnM2 +

1

3

(mµ

M

)2
]
uµ

=
−ie|Y L|2

32π2

[
2

ε
− γ + ln(4π) +

1

2
− lnM2 +

1

3

(mµ

M

)2
]
εν ūeRγ

νuµR . (E.2.18)

when keeping terms up to order O(m2
µ/M

2).

For the case with the photon coming out from the internal Ω (see Fig.E.1), the ampli-

tude is

MΩ→γ = ūeR(−iY ∗L )εν

∫
d4k

(2π)4

i

(k − q)2 −M2
(−ie(2k − q)ν) i

(k2 −M2)

i(6p− 6k)

(p− k)2
(iYL)uµ

= −e|Y L|2εν ūeR
[∫

d4k

(2π)4

(2k − q)ν(6p− 6k)

((k − q)2 −M2)(k2 −M2)(p− k)2

]
uµ. (E.2.19)

Integrating out the loop momentum, taking me = 0 and using the transverse polarization

condition, eq. (E.2.16), we get the amplitude when keeping the terms up to O(
m2
µ

M2 )

MΩ→γ =
ie|Y L|2
32π2

[
2

ε
− γ + ln(4π) +

1

2
− lnM2 +

1

6

(mµ

M

)2
]
εν ūeRγ

νuµR . (E.2.20)

Combining the three diagrams, we have

Mµ→eγ = −ie|Y
L|2

192π2

(mµ

M

)2

ūeR 6εuµR . (E.2.21)
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Usingme = 0 and eq. (E.2.16), we can write the result into the well known dipole operator

ie|Y L|2
768π2

(mµ

M2

)
ēRσµνF

µνµL. (E.2.22)

Averaging the incoming muon spin, the amplitude square becomes

< |M |2 >spin= − e2|Y L|4
2× 1922π4

(
mµ

M
)4Tr[6peγµ(6pµ)γµ] =

α|Y L|4
962π3

(
m6
µ

M4

)
. (E.2.23)

This gives the decay rate

Γ(µ→ γe) =
1

32π2
< |M |2 >spin

|q|
m2
µ

∫
dΩ =

α|Y L|4
7682π4

m5
µ

M4
. (E.2.24)

Comparing to the total muon decay rate G2
Fm

5
µ

192π3 , this gives the branching ratio

Br(µ→ γe) =
α|Y L|4

3072πG2
FM

4
. (E.2.25)

Comparing to the LFV bound today Br(µ→ eX) < 10−11 [?], we have

M > 10|Y L|TeV. (E.2.26)

E.3 Coherent muon-electron conversion

In this appendix we estimate the bounds from the LFV process of coherent muon-electron

conversion (Fig. E.2). For a review of the coherent conversion and how it can be used to

put bounds on new physics, see [162, 271] for example.

Our goal is to find the bound on M by comparing the theoretical expression with

experimental data. Here we use the general result derived in [162] for the theoretical

branching ratio. The low energy effective Hamiltonian is [162]

H = −ēÕµ+ h.c.

Õ = −
√

4πα

[
γα(fE0 − fM0γ5)

q2

m2
µ

+ iσαβ
qβ

mµ

(fM1 + fE1γ5)

]
Aα(q) +

GF√
2
γα(a− bγ5)Jα

Jα = ūγαu+ cdd̄γ
αd (E.3.27)
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Figure E.2: µ− e conversion in nuclei emitted by photon and Z.

and the final result of the conversion rate is

wconv = 3× 1023(w(1)
conv + w(2)

conv) sec−1,

w(1)
conv =

∣∣∣∣fE0Ip −
GF√

2

m2
µ

4πZα
a(Z(2 + cd)Ip +N(1 + 2cd)In) + fM1I34

∣∣∣∣2 ,
w(2)
conv =

∣∣∣∣fM0Ip −
GF√

2

m2
µ

4πZα
b(Z(2 + cd)Ip +N(1 + 2cd)In) + fE1I34

∣∣∣∣2 , (E.3.28)

where

Ip = −(Ip1 + Ip2 ), In = −(In1 + In2 ), I34 = I3 + I4. (E.3.29)

Here q represents the photon momentum, and the terms containingAα in the Hamiltonian

describe the transition that is mediated by a photon. The I’s in the last part are coefficients

for various elements including the proton-neutron distribution function and the EM field

inside the nucleus. They have been calculated in [271] for various materials.

We are ready to use these results in the composite model. The rate of µN → eN arising

from the preon sector is given by the six diagrams in Fig. E.2. Doing the same calculation

as in appendix B but allowing the out-going photon to be off-shell, the coefficients in

eq. (E.3.27) are of order

fE0 ∼ −fM0 ∼ fM1 ∼ −fE1 ∼ a ∼ b ∼ |Y
L|2

768π2

m2
µ

M2
, cd ∼ 1. (E.3.30)

Given these coefficients and the I’s calculated in [162, 271] (which are of order

10−1 GeV−
1
2 ), the conversion rate with target 48

22Ti can be estimated as:

wconv ∼ 1014|Y L|4
(mµ

M

)4

sec−1 . (E.3.31)
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Comparing to the experimental total muon capture rate w(Ti)cap = 2.6 × 106 sec−1 [347],

this gives the branching ratio of the conversion as

Br(µ→ e, T i) ≡ wconv
wcap

= 108|Y L|4
(mµ

M

)4

. (E.3.32)

Comparing to the experimental limit Br(µ→ e) < 1.7× 10−12 [269], this gives

M > 10|Y L|TeV. (E.3.33)
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[332] Sébastien Ray. Some properties of meta-stable supersymmetry-breaking vacua in
wess-zumino models.

[333] E. J. Weinberg S. R. Coleman. Radiative corrections as the origin of spontaneous
symmetry breaking. Phys. Rev., D(7):1888–1910, 1973.

[334] Jose Santiago. Minimal Flavor Protection: A New Flavor Paradigm in Warped Mod-
els. JHEP, 12:046, 2008.

[335] Jose Santiago. Minimal Flavor Protection: A New Flavor Paradigm in Warped Mod-
els. JHEP, 12:046, 2008.

[336] N. Seiberg. Electric-magnetic duality in supersymmetric non-abelian gauge theo-
ries.

[337] Nathan Seiberg. Exact results on the space of vacua of four dimensional susy gauge
theories.

[338] Yael Shadmi. Metastable Rank-Condition Supersymmetry Breaking in a Chiral Ex-
ample. JHEP, 1108:149, 2011.

[339] Xiang-Dong Shi and George M. Fuller. A New dark matter candidate: Nonthermal
sterile neutrinos. Phys.Rev.Lett., 82:2832–2835, 1999.

[340] Mikhail A. Shifman, A. I. Vainshtein, and Valentin I. Zakharov. Remarks on Higgs
Boson Interactions with Nucleons. Phys. Lett., B78:443, 1978.

[341] David Shih. Spontaneous r-symmetry breaking in o’raifeartaigh models.

[342] Satoshi Shirai, Masahito Yamazaki, and Kazuya Yonekura. Aspects of non-minimal
gauge mediation. 03 2010.

356



[343] Yuri Shirman. New models of gauge mediated dynamical supersymmetry break-
ing.

[344] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. Pythia 6.4 Physics and
Manual. JHEP, 05:026, 2006.

[345] Zheng Sun. Tree level spontaneous r-symmetry breaking in o’raifeartaigh models.
10 2008.

[346] Raman Sundrum. From Fixed Points to the Fifth Dimension. 2011.

[347] T. Suzuki, David F. Measday, and J.P. Roalsvig. Total Nuclear Capture Rates for
Negative Muons. Phys.Rev., C35:2212, 1987.

[348] K. Takeda et al. Nucleon strange quark content from two-flavor lattice QCD with
exact chiral symmetry. Phys.Rev., D83:114506, 2011.

[349] D. Toussaint and W. Freeman. The strange quark condensate in the nucleon in 2+1
flavor QCD. Phys. Rev. Lett., 103:122002, 2009.

[350] David Tucker-Smith and Neal Weiner. Inelastic dark matter. Phys.Rev., D64:043502,
2001.

[351] Y. Ushiroda et al. Time-Dependent CP Asymmetries in B0 → K0
Sπ

0γ transitions.
Phys.Rev., D74:111104, 2006.

[352] Jian Wang, Chong Sheng Li, Ding Yu Shao, and Hao Zhang. Next-to-leading order
QCD predictions for the signal of Dark Matter and photon associated production at
the LHC. 2011.

[353] Casey R. Watson, Zhiyuan Li, and Nicholas K. Polley. Constraining Sterile Neutrino
Warm Dark Matter with Chandra Observations of the Andromeda Galaxy. 2011.

[354] P. Wintz et al. Test of LFC in µ→ e conversion on titanium.

[355] E. Witten. Phys. Rev. Lett., B(105):267, 1981.

[356] E. Witten. Nucl. Phys., B(202):253, 1982.

357



[357] Jun Wu, Chiu-Man Ho, and Daniel Boyanovsky. Sterile neutrinos produced near
the EW scale. I. Mixing angles, MSW resonances and production rates. Phys.Rev.,
D80:103511, 2009.

[358] R. D. Young and A. W. Thomas. Octet baryon masses and sigma terms from an
SU(3) chiral extrapolation. Phys. Rev., D81:014503, 2010.

[359] Ross D. Young and Anthony W. Thomas. Recent results on nucleon sigma terms in

lattice QCD. Nucl. Phys., A844:266c–271c, 2010.

358


	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Hierarchy problem in the SM
	SUSY and its breaking
	The Randall-Sundrum model

	Experimental motivation for BSM theories
	Neutrino oscillations
	Matter-antimatter asymmetry
	Dark matter

	IR constraints on BSM theories
	Flavor constraints on the anarchic RS model
	SUSY breaking, gaugino mass and R-symmetry
	Dirac leptogenesis, WDM and composite neutrinos
	Collider constraints on DM


	Lepton Flavor Violation in RS Model
	Introduction
	Review of anarchic Randall-Sundrum models
	Tree-level constraints from 3e and e conversion
	Minimal RS model
	Custodially protected model

	Operator analysis of e
	Calculation of e  in a warped extra dimension
	Calculation of a
	Calculation of b
	Modifications in custodial modes
	Constraints and tension

	Power counting and finiteness
	4D and 5D theories of bulk fields
	Bulk fields in the 5D formalism
	Bulk fields in the KK formalism
	Brane fields in the 5D formalism
	Brane fields in the KK formalism
	Matching KK and loop cutoffs
	Two-loop structure

	Outlook and Conclusion

	bs Penguin in RS Model
	Introduction
	Flavor in Randall-Sundrum models
	Calculation of the bq Penguin in RS
	Effective Hamiltonian for bq transitions
	Structure of the amplitude
	Calculation of C7()
	Calculation of C8()
	Modifications from custodial symmetry

	Radiative B decays
	The BXs,d decay
	Master formula for Br(BXs)
	Master formula for "426830A Br(BXd) "526930B 
	Analytic estimate of constraints
	CP asymmetry in B K*

	Semileptonic B decays
	Effective Hamiltonian for bs+- transitions
	Benchmark observables

	Numerical analysis
	Strategy
	General pattern of RS contributions
	Effects on benchmark observables

	Conclusions

	Spontaneous R-symmetry Breaking with Multiple Pseudomoduli
	Introduction
	Model Definition
	Pseudomoduli Masses at 1-Loop
	Vanishing 1-Loop Masses

	Avoiding Light Gaugino Mass Problem with An Uplifted Model
	Introduction
	Overview of the SSMGM Model
	Reviewing the ISS Framework
	The necessity of metastable SUSY-breaking
	The ISS Model
	Uplifting the ISS Model

	The Adjoint Instability
	The messenger contribution to Veff(Z)
	Model Building Requirements for Stabilizing Z

	Vacuum Structure & Spectrum
	The Uplifted Vacuum (k = 0)
	The ISS Vacuum (k = 1)

	Direct Gauge Mediation
	Stabilizing the Uplifted Vacuum
	Organizing the Spectrum & Contributions to VCW
	Conditions for local minimum
	Validity of 1-loop calculation
	Lifetime Constraints on Uplifted Vacuum Stabilization

	Conclusions

	Leptogenesis in The Composite Neutrino Model
	INTRODUCTION
	COMPOSITE RIGHT-HANDED NEUTRINO
	THE UV COMPLETE THEORY
	Particle Content
	Interactions
	Experimental Bounds

	LEPTOGENESIS
	Standard leptogenesis
	Dirac-type leptogenesis

	DISCUSSIONS AND CONCLUSIONS

	Warm Dark Matter in The Composite Neutrino Model
	Introduction
	The Composite Dirac Neutrino Model
	Setup
	Spectrum
	Dirac vs Majorana
	Decoupling

	Warm Dark Matter
	Non-Thermal WDM
	Thermal WDM
	Supercooled Confinement
	Entropy Production Estimate

	Conclusions

	LEP Constraints on Dark Matter Interactions
	Introduction
	The Interaction of Dark matter with Leptons
	LEP Limits on the effective Dark Matter–electron coupling
	Limits on the Dark Matter–nucleon scattering cross section
	Limits on the Dark Matter annihilation cross section
	Constraints on theories with light mediators
	Conclusions

	LHC Constraints on Dark Matter Interactions
	Introduction
	An Effective Theory for dark matter interactions
	Mono-jets at the LHC
	Comparing Various Mono-Jet Analyses
	Mono-Jet Bounds Compared to Direct Dark Matter Searches
	Limits on Dark Matter Annihilation

	Light mediators
	Mono-photons at the LHC
	Dark Matter Coupling through Higgs Exchange
	The Invisible Higgs Analysis as a Dark Matter Search
	A Lower Bound on Dark Matter–Nucleon Scattering from Current Higgs Limits

	Conclusions

	Details for e  Calculation
	Matching 5D amplitudes to 4D EFTs
	Estimating the size of each diagram
	Relative sizes of couplings
	Suppression mechanisms in diagrams
	Dimensionless integrals
	Robustness against equationment

	Analytic expressions
	Dominant diagrams
	Subdominant a coefficient diagrams
	Subdominant b coefficient diagrams
	Custodial Models

	Position, momentum, and position/momentum space
	Bulk Feynman Rules
	Derivation of fermion propagators
	Flat 5D fermion propagator
	Warped 5D fermion propagator
	Euclidean warped 5D fermion propagator

	Finiteness of the brane-localized neutral Higgs diagram
	Momentum space
	Position/momentum space


	Details for bs Calculation
	Dimensionless Integrals for Leading Diagrams
	Propagator functions
	C7 integrals
	C8 integrals

	Estimating the size of the misalignment contribution
	Misalignment from fbL
	Misalignment from fbR
	Size of misalignment coefficients

	Comments on 5D dipole theory uncertainties
	KK decomposition
	5D cutoff


	Useful Lemma for R-symmetry Breaking
	Derivation of The Average Dark Matter Velocity in A Dwarf Galaxy
	Some Remarks for Leptogenesis with Composite Neutrinos
	Matching the UV theory to the effective theory
	Calculation of e 
	Coherent muon-electron conversion

	Bibliography

